Lucas Picasarri-Arrieta

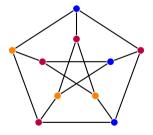
Supervisor: Frédéric Havet

Co-Advisor: Stéphane Bessy

18th June 2024

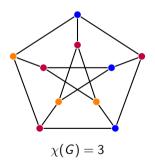
Graph colouring

• Proper k-colouring of G: partition of V(G) into k independent sets.

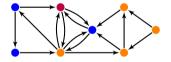


Graph colouring

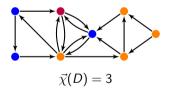
- Proper k-colouring of G: partition of V(G) into k independent sets.
- Chromatic Number $\chi(G)$: minimum k s.t. G admits a proper k-colouring.



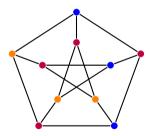
• k-dicolouring of D: partition of V(D) into k acyclic subdigraphs (i.e. no monochromatic directed cycle).



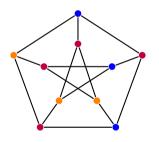
- k-dicolouring of D: partition of V(D) into k acyclic subdigraphs (i.e. no monochromatic directed cycle).
- Dichromatic number $\vec{\chi}(D)$: minimum k s.t. D admits a k-dicolouring.

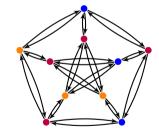


- k-dicolouring of D: partition of V(D) into k acyclic subdigraphs (i.e. no monochromatic directed cycle).
- **Dichromatic number** $\vec{\chi}(D)$: minimum k s.t. D admits a k-dicolouring.
- Generalizations of proper colouring and chromatic number.



- k-dicolouring of D: partition of V(D) into k acyclic subdigraphs (i.e. no monochromatic directed cycle).
- Dichromatic number $\vec{\chi}(D)$: minimum k s.t. D admits a k-dicolouring.
- Generalizations of proper colouring and chromatic number.



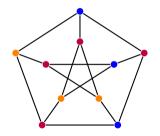


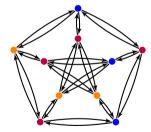
$$\chi(G) = \vec{\chi}(\overleftarrow{G})$$

From graphs to digraphs: main questions

Given any result on graph colouring, two questions arise:

- Question 1: Does it generalize to all digraphs?
- Question 2: If it does, can we strengthen it on oriented graphs?





From graphs to digraphs: examples (1/2)

 $\omega(G)$: size of a largest clique.

Hole: induced cycle of length at least 4.

Antihole: complementary of a hole.

G is perfect if $\chi(H) = \omega(H)$ holds for every induced subgraph H of G.

Clique

Theorem (Strong Perfect Graph Theorem, Chudnovsky et al. 2006)

A graph G is perfect iff G contains neither any odd hole nor any odd antihole.

Odd hole

Odd antihole

$$\omega=rac{\mathit{n}-1}{2}$$
, $\chi=rac{\mathit{n}+1}{2}$

From graphs to digraphs: examples (1/2)

 $\overleftrightarrow{\omega}(D)$: size of the largest biclique.

Bidirected hole: a hole in the symmetric part of D.

Bidirected antihole: an antihole in the symmetric part of D.

D is perfect if $\vec{\chi}(H) = \overleftrightarrow{\omega}(H)$ holds for every induced subdigraph H of D.

Theorem (Andres and Hochstättler 2015)

A digraph D is perfect iff D contains neither any bidirected odd hole, nor any bidirected odd antihole, nor any induced directed cycle of length at least 3.

Bidirected odd hole $\overleftrightarrow{\omega} = 2$. $\vec{v} > 3$

Bidirected odd antihole

$$\overleftrightarrow{\omega} = \frac{n-1}{2}, \ \overrightarrow{\chi} = \frac{n+1}{2} \qquad \qquad \overleftrightarrow{\omega} = 1, \ \overrightarrow{\chi} = 2$$

Induced directed cycle

$$\overleftrightarrow{\omega} = 1, \ \vec{\chi} = 2$$

From graphs to digraphs: examples (2/2)

A (di)graph is planar if it can be drawn on the plane without crossing edges.

Theorem (Four Colour Theorem, Appel and Haken 1976)

Every planar graph G satisfies $\chi(G) \leq 4$.

Corollary

Every planar digraph D satisfies $\vec{\chi}(D) \leq 4$.

Remark: Best possible because of

Conjecture (Neumann-Lara 1982)

Every oriented (no digon) planar graph \vec{G} satisfies $\vec{\chi}(\vec{G}) \leq 2$.

Remark: $\vec{\chi}(\vec{G}) \leq 3$ follows from the density of planar graphs.

From graphs to digraphs: examples (2/2)

A (di)graph is planar if it can be drawn on the plane without crossing edges.

Theorem (Four Colour Theorem, Appel and Haken 1976)

Every planar graph G satisfies $\chi(G) \leq 4$.

Corollary

Every planar digraph D satisfies $\vec{\chi}(D) \leq 4$.

Remark: Best possible because of 4

Conjecture (Neumann-Lara 1982)

Every oriented (no digon) planar graph \vec{G} satisfies $\vec{\chi}(\vec{G}) \leq 2$.

Remark: $\vec{\chi}(\vec{G}) \leq 3$ follows from the density of planar graphs.

From graphs to digraphs: examples (2/2)

A (di)graph is planar if it can be drawn on the plane without crossing edges.

Theorem (Four Colour Theorem, Appel and Haken 1976)

Every planar graph G satisfies $\chi(G) < 4$.

Corollary

Every planar digraph D satisfies $\vec{\chi}(D) < 4$.

Remark: Best possible because of

Conjecture (Neumann-Lara 1982)

Every oriented (no digon) planar graph \vec{G} satisfies $\vec{\chi}(\vec{G}) \leq 2$.

Remark: $\vec{\chi}(\vec{G}) < 3$ follows from the density of planar graphs.

Contributions

Chordal graphs

Dichromatic number of chordal graphs,

[Bessy, Havet, and P., 2023]

On the Directed Brooks' Theorem

- Brooks-type colourings of digraphs in linear time, [Gonçalves, P., and Reinald, 2024]
- Strengthening the Directed Brooks' Theorem for oriented graphs and consequences on digraph redicolouring, [P., JGT, 2023]

Density and structure of dicritical digraphs

ullet Minimum number of arcs in k-critical digraphs with order at most 2k-1,

[P. and Stiebitz, DM, 2024]

- On the minimum number of arcs in 4-dicritical oriented graphs, [Havet, P., and Rambaud, 2023]
- The 3-dicritical semicomplete digraphs,

[Havet, P., and Hörsch, 2024]

• Subdivisions in large critical digraphs,

[P. and Rambaud, 2024]

Digraph redicolouring

- Digraph redicolouring, [Bousquet, Havet, Nisse, P., and Reinald, EJC, 2024]
- Redicolouring digraphs: directed treewidth and cycle-degeneracy, [Nisse, P., and Sau, DAM, 2024]

Picasarri-Arrieta Lucas

Digraph colouring

Contributions

Chordal graphs

Dichromatic number of chordal graphs,

[Bessy, Havet, and P., 2023]

On the Directed Brooks' Theorem

- Brooks-type colourings of digraphs in linear time, [Gonçalves, P., and Reinald, 2024]
- Strengthening the Directed Brooks' Theorem for oriented graphs and consequences on digraph redicolouring, [P., JGT, 2023]

Density and structure of dicritical digraphs

• Minimum number of arcs in k-critical digraphs with order at most 2k-1,

[P. and Stiebitz, DM, 2024]

- On the minimum number of arcs in 4-dicritical oriented graphs, [Havet, P., and Rambaud, 2023]
 - [Havet, P., and Hörsch, 2024]

The 3-dicritical semicomplete digraphs,

[D and Dambaud 2024]

Subdivisions in large critical digraphs,

[P. and Rambaud, 2024]

Digraph redicolouring

• Digraph redicolouring,

[Bousquet, Havet, Nisse, P., and Reinald, EJC, 2024]

• Redicolouring digraphs: directed treewidth and cycle-degeneracy, [Nisse, P., and Sau, DAM, 2024]

Contributions

Chordal graphs

Dichromatic number of chordal graphs,

[Bessy, Havet, and P., 2023]

On the Directed Brooks' Theorem

- Brooks-type colourings of digraphs in linear time,
- [Gonçalves, P., and Reinald, 2024]
- Strengthening the Directed Brooks' Theorem for oriented graphs and consequences on digraph redicolouring, [P., JGT, 2023]

Density and structure of dicritical digraphs

- Minimum number of arcs in k-critical digraphs with order at most 2k-1,
 - [P. and Stiebitz, DM, 2024]
- On the minimum number of arcs in 4-dicritical oriented graphs, [Havet, P., and Rambaud, 2023]
- The 3-dicritical semicomplete digraphs,

[Havet, P., and Hörsch, 2024]

• Subdivisions in large critical digraphs,

[P. and Rambaud, 2024]

Digraph redicolouring

• Digraph redicolouring,

- [Bousquet, Havet, Nisse, P., and Reinald, EJC, 2024]
- Redicolouring digraphs: directed treewidth and cycle-degeneracy, [Nisse, P., and Sau, DAM, 2024]

Picasarri-Arrieta Lucas

Digraph colouring

Definitions

- A graph G is k-critical if $\chi(G) = k$ and $\chi(H) < k$ holds for every $H \subsetneq G$.
- A digraph D is k-dicritical if $\vec{\chi}(D) = k$ and $\vec{\chi}(H) < k$ holds for every $H \subsetneq D$.
- $g_k(n)$: minimum number of edges in an *n*-vertex *k*-critical graph.
- $d_k(n)$: minimum number of arcs in an n-vertex k-dicritical digraph.
- $o_k(n)$: minimum number of arcs in an *n*-vertex *k*-dicritical oriented graph.

Trivial bounds

- $d_k(n) \leq 2 \cdot g_k(n)$
- $o_k(n) \geq d_k(n)$

- ① $d_k(n) = 2 \cdot g_k(n)$ and equality holds only for bidirected graphs (unless n = k + 1).
- $o_k(n) \ge (1+\varepsilon) \cdot d_k(n)$ when $k \ge 3$ and n large enough.

Definitions

- A graph G is k-critical if $\chi(G) = k$ and $\chi(H) < k$ holds for every $H \subsetneq G$.
- A digraph D is k-dicritical if $\vec{\chi}(D) = k$ and $\vec{\chi}(H) < k$ holds for every $H \subsetneq D$.
- $g_k(n)$: minimum number of edges in an *n*-vertex *k*-critical graph.
- $d_k(n)$: minimum number of arcs in an *n*-vertex *k*-dicritical digraph.
- $o_k(n)$: minimum number of arcs in an *n*-vertex *k*-dicritical oriented graph.

Trivial bounds

- $d_k(n) \leq 2 \cdot g_k(n)$
- $o_k(n) \geq d_k(n)$

- ① $d_k(n) = 2 \cdot g_k(n)$ and equality holds only for bidirected graphs (unless n = k + 1).
- $\circ_k(n) \geq (1+\varepsilon) \cdot d_k(n)$ when $k \geq 3$ and n large enough.

Definitions

- A graph G is k-critical if $\chi(G) = k$ and $\chi(H) < k$ holds for every $H \subsetneq G$.
- A digraph D is k-dicritical if $\vec{\chi}(D) = k$ and $\vec{\chi}(H) < k$ holds for every $H \subsetneq D$.
- $g_k(n)$: minimum number of edges in an *n*-vertex *k*-critical graph.
- $d_k(n)$: minimum number of arcs in an *n*-vertex *k*-dicritical digraph.
- $o_k(n)$: minimum number of arcs in an *n*-vertex *k*-dicritical oriented graph.

Trivial bounds

- $d_k(n) \leq 2 \cdot g_k(n)$
- $o_k(n) \geq d_k(n)$

- ① $d_k(n) = 2 \cdot g_k(n)$ and equality holds only for bidirected graphs (unless n = k + 1).
- $\circ_k(n) \geq (1+\varepsilon) \cdot d_k(n)$ when $k \geq 3$ and n large enough.

Definitions

- A graph G is k-critical if $\chi(G) = k$ and $\chi(H) < k$ holds for every $H \subsetneq G$.
- A digraph D is k-dicritical if $\vec{\chi}(D) = k$ and $\vec{\chi}(H) < k$ holds for every $H \subsetneq D$.
- $g_k(n)$: minimum number of edges in an *n*-vertex *k*-critical graph.
- $d_k(n)$: minimum number of arcs in an *n*-vertex *k*-dicritical digraph.
- $o_k(n)$: minimum number of arcs in an *n*-vertex *k*-dicritical oriented graph.

Trivial bounds

- $d_k(n) \leq 2 \cdot g_k(n)$
- $o_k(n) \geq d_k(n)$

- $d_k(n) = 2 \cdot g_k(n)$ and equality holds only for bidirected graphs (unless n = k + 1).
- $o_k(n) \ge (1+\varepsilon) \cdot d_k(n)$ when $k \ge 3$ and n large enough.

- Undirected case: $g_k(n) \ge \frac{1}{2}(k \frac{2}{k-1})n \frac{k(k-3)}{2(k-1)}$. [Kostochka and Yancey 2014]
- Conjecture: $d_k(n) \ge (k \frac{2}{k-1})n \frac{k(k-3)}{(k-1)}$. [Kostochka and Stiebitz 2020] known for $k \in \{2, 3, 4\}$, open for $k \ge 5$.
- **Best bound:** $d_k(n) \ge (k \frac{1}{2} + \frac{2}{k-1})n \frac{k(k-3)}{(k-1)}$. [Aboulker and Vermande 2022]
- Conjecture: $o_k(n) \ge (1+\varepsilon) \cdot d_k(n)$ when $k \ge 3$ and n large enough. [Kostochka and Stiebitz 2020]
- known for k = 3. [Aboulker, Bellitto, Havet and Rambaud 2022]

- Undirected case: $g_k(n) \ge \frac{1}{2}(k \frac{2}{k-1})n \frac{k(k-3)}{2(k-1)}$. [Kostochka and Yancey 2014]
- Conjecture: $d_k(n) \ge (k \frac{2}{k-1})n \frac{k(k-3)}{(k-1)}$. [Kostochka and Stiebitz 2020] known for $k \in \{2, 3, 4\}$, open for $k \ge 5$.
- **Best bound:** $d_k(n) \ge (k \frac{1}{2} + \frac{2}{k-1})n \frac{k(k-3)}{(k-1)}$. [Aboulker and Vermande 2022]
- Conjecture: $o_k(n) \ge (1 + \varepsilon) \cdot d_k(n)$ when $k \ge 3$ and n large enough. [Kostochka and Stiebitz 2020
- known for k = 3. [Aboulker, Bellitto, Havet and Rambaud 2022]

- Undirected case: $g_k(n) \ge \frac{1}{2}(k \frac{2}{k-1})n \frac{k(k-3)}{2(k-1)}$. [Kostochka and Yancey 2014]
- Conjecture: $d_k(n) \ge (k \frac{2}{k-1})n \frac{k(k-3)}{(k-1)}$. [Kostochka and Stiebitz 2020] known for $k \in \{2, 3, 4\}$, open for $k \ge 5$.
- Best bound: $d_k(n) \ge (k \frac{1}{2} + \frac{2}{k-1})n \frac{k(k-3)}{(k-1)}$. [Aboulker and Vermande 2022]
- Conjecture: $o_k(n) \ge (1+\varepsilon) \cdot d_k(n)$ when $k \ge 3$ and n large enough. [Kostochka and Stiebitz 2020]
- known for k = 3. [Aboulker, Bellitto, Havet and Rambaud 2022]

- Undirected case: $g_k(n) \ge \frac{1}{2}(k \frac{2}{k-1})n \frac{k(k-3)}{2(k-1)}$. [Kostochka and Yancey 2014]
- Conjecture: $d_k(n) \ge (k \frac{2}{k-1})n \frac{k(k-3)}{(k-1)}$. [Kostochka and Stiebitz 2020] known for $k \in \{2, 3, 4\}$, open for $k \ge 5$.
- Best bound: $d_k(n) \ge (k \frac{1}{2} + \frac{2}{k-1})n \frac{k(k-3)}{(k-1)}$. [Aboulker and Vermande 2022]
- Conjecture: $o_k(n) \ge (1+\varepsilon) \cdot d_k(n)$ when $k \ge 3$ and n large enough. [Kostochka and Stiebitz 2020]
- known for k = 3. [Aboulker, Bellitto, Havet and Rambaud 2022]

Minimum density of dicritical digraphs – contributions

Theorem (P. and Stiebitz 2024)

For every $n, k, p \in \mathbb{N}$ with n = k + p and $2 \le p \le k - 1$, $d_k(n) = n(n - 1) - 2(p^2 + 1)$ and equality holds only for bidirected Dirac's graphs.

Theorem (Havet, P. and Rambaud 2023)

For every $n \in \mathbb{N}$, $d_4(n) \ge \frac{10}{3}n - \frac{4}{3}$ and equality holds only for bidirected Ore's graphs

Theorem (Havet, P. and Rambaud 2023)

For every
$$n \in \mathbb{N}$$
, $o_4(n) \ge \left(\frac{10}{3} + \frac{1}{51}\right)n - 1$.

Minimum density of dicritical digraphs – contributions

Theorem (P. and Stiebitz 2024)

For every $n, k, p \in \mathbb{N}$ with n = k + p and $2 \le p \le k - 1$, $d_k(n) = n(n - 1) - 2(p^2 + 1)$ and equality holds only for bidirected Dirac's graphs.

Theorem (Havet, P. and Rambaud 2023)

For every $n \in \mathbb{N}$, $d_4(n) \ge \frac{10}{3}n - \frac{4}{3}$ and equality holds only for bidirected Ore's graphs.

Theorem (Havet, P. and Rambaud 2023)

For every
$$n \in \mathbb{N}$$
, $o_4(n) \ge \left(\frac{10}{3} + \frac{1}{51}\right)n - 1$.

Minimum density of dicritical digraphs – contributions

Theorem (P. and Stiebitz 2024)

For every $n, k, p \in \mathbb{N}$ with n = k + p and $2 \le p \le k - 1$, $d_k(n) = n(n - 1) - 2(p^2 + 1)$ and equality holds only for bidirected Dirac's graphs.

Theorem (Havet, P. and Rambaud 2023)

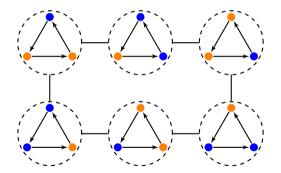
For every $n \in \mathbb{N}$, $d_4(n) \ge \frac{10}{3}n - \frac{4}{3}$ and equality holds only for bidirected Ore's graphs.

Theorem (Havet, P. and Rambaud 2023)

For every
$$n \in \mathbb{N}$$
, $o_4(n) \ge \left(\frac{10}{3} + \frac{1}{51}\right)n - 1$.

 $\mathcal{D}_k(D)$: the k-dicolouring graph of D:

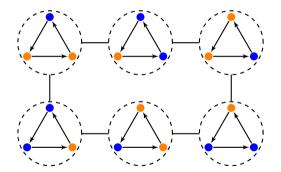
- $V(\mathcal{D}_k(D))$ are the k-dicolourings of D,
- $\gamma_i \gamma_j \in E(\mathcal{D}_k(D))$ if $\gamma_i = \gamma_j$ except on one vertex.



 $C_k(G)$: the k-colouring graph of G is defined similarly with proper k-colourings.

 $\mathcal{D}_k(D)$: the k-dicolouring graph of D:

- $V(\mathcal{D}_k(D))$ are the k-dicolourings of D,
- $\gamma_i \gamma_j \in E(\mathcal{D}_k(D))$ if $\gamma_i = \gamma_j$ except on one vertex.



 $C_k(G)$: the k-colouring graph of G is defined similarly with proper k-colourings.

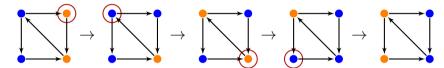
Recolouring sequence: a path in $\mathcal{D}_k(D)$.

D is k-mixing: $\mathcal{D}_k(D)$ is connected.

Main questions

- Is D k-mixing?
- Can we bound the diameter of $\mathcal{D}_k(D)$?

Recolouring sequence: a path in $\mathcal{D}_k(D)$.



D is k-mixing: $\mathcal{D}_k(D)$ is connected.

Main questions:

- Is D k-mixing?
- Can we bound the diameter of $\mathcal{D}_k(D)$?

Digraph recolouring – bounded degeneracy

Undirected graphs

$$\delta = \max_{H \subseteq G} \min_{v \in V(H)} d_H(v)$$

• If $k \ge \delta + 2$, then G is k-mixing.

(Bonsma and Cereceda 2007; Dyer et al. 2006)

- Conjecture: $diam(C_k(G)) = O(n^2)$
 - (Cereceda 2007)
- If $k \geq \delta + 2$, $diam(C_k(G)) = O_{\delta}(n^{\delta+1})$.
- If $k \geq \frac{3}{2}(\delta + 1)$, $diam(C_k(G)) = O(n^2)$.

(Bousquet and Heinrich 2019)

• If $k \geq 2(\delta + 1)$, $diam(\mathcal{C}_k(G)) \leq \delta \cdot n$.

(Bousguet and Perarnau 2016)

$$\delta = \max_{H \subseteq D} \min_{v \in V(H)} \min(d_H^-(v), d_H^+(v))$$

- If $k \ge \delta + 2$, then *D* is *k*-mixing.
- Conjecture: $diam(\mathcal{D}_k(D)) = O(n^2)$
- If $k \geq \frac{3}{2}(\delta + 1)$, $diam(\mathcal{D}_k(D)) = O(n^2)$.
- If $k \geq 2(\delta + 1)$, $diam(\mathcal{D}_k(D)) \leq \delta \cdot n$. (Bousquet, Havet, Nisse, P. and Reinald 2024)
- If $k \geq \delta + 2$, $diam(\mathcal{D}_k(D)) = O_{\delta}(n^{\delta+1})$.

 (Nisse, P. and Sau 2024)

Digraph recolouring - bounded degeneracy

Undirected graphs

$$\delta = \max_{H \subseteq G} \min_{v \in V(H)} d_H(v)$$

- If $k \ge \delta + 2$, then G is k-mixing. (Bonsma and Cereceda 2007 : Dver et al. 2006)
- Conjecture: $diam(C_k(G)) = O(n^2)$ (Cereceda 2007)
- If $k \geq \delta + 2$, $diam(C_k(G)) = O_{\delta}(n^{\delta+1})$.
- If $k \geq \frac{3}{2}(\delta + 1)$, $diam(C_k(G)) = O(n^2)$.

(Bousquet and Heinrich 2019)

• If $k \geq 2(\delta+1)$, $diam(\mathcal{C}_k(G)) \leq \delta \cdot n$.

(Bousquet and Perarnau 2016)

$$\delta = \max_{H \subseteq D} \min_{v \in V(H)} \min(d_H^-(v), d_H^+(v))$$

- If $k \ge \delta + 2$, then *D* is *k*-mixing.
- Conjecture: $diam(\mathcal{D}_k(D)) = O(n^2)$
- If $k \geq \frac{3}{2}(\delta + 1)$, $diam(\mathcal{D}_k(D)) = O(n^2)$.
- If $k \geq 2(\delta + 1)$, $diam(\mathcal{D}_k(D)) \leq \delta \cdot n$.

 (Bousquet, Havet, Nisse, P. and Reinald 2024)
- If $k \geq \delta+2$, $diam(\mathcal{D}_k(D))=O_\delta(n^{\delta+1})$. (Nisse, P. and Sau 2024)

Digraph recolouring - bounded degeneracy

Undirected graphs

$$\delta = \max_{H \subseteq G} \min_{v \in V(H)} d_H(v)$$

- If $k \geq \delta + 2$, then G is k-mixing. (Bonsma and Cereceda 2007 ; Dyer et al. 2006)
- Conjecture: $diam(C_k(G)) = O(n^2)$ (Cereceda 2007)
- If $k \geq \delta + 2$, $diam(C_k(G)) = O_{\delta}(n^{\delta+1})$.
- If $k \geq \frac{3}{2}(\delta + 1)$, $diam(C_k(G)) = O(n^2)$.

(Bousquet and Heinrich 2019)

• If
$$k \geq 2(\delta + 1)$$
, $diam(\mathcal{C}_k(G)) \leq \delta \cdot n$.

(Bousquet and Perarnau 2016)

$$\delta = \max_{H \subseteq D} \min_{v \in V(H)} \min(d_H^-(v), d_H^+(v))$$

- If $k \ge \delta + 2$, then *D* is *k*-mixing.
- Conjecture: $diam(\mathcal{D}_k(D)) = O(n^2)$
- If $k \geq \frac{3}{2}(\delta + 1)$, $diam(\mathcal{D}_k(D)) = O(n^2)$.
- If $k \geq 2(\delta + 1)$, $diam(\mathcal{D}_k(D)) \leq \delta \cdot n$.

 (Bousquet, Havet, Nisse, P. and Reinald 2024)
- If $k \geq \delta+2$, $diam(\mathcal{D}_k(D)) = O_{\delta}(n^{\delta+1})$. (Nisse, P. and Sau 2024)

Digraph recolouring – bounded degeneracy

Undirected graphs

$$\delta = \max_{H \subseteq G} \min_{v \in V(H)} d_H(v)$$

- If $k \geq \delta + 2$, then G is k-mixing. (Bonsma and Cereceda 2007 ; Dyer et al. 2006)
- Conjecture: $diam(C_k(G)) = O(n^2)$ (Cereceda 2007)
- If $k \geq \delta + 2$, $diam(C_k(G)) = O_{\delta}(n^{\delta+1})$.
- If $k \geq \frac{3}{2}(\delta + 1)$, $diam(C_k(G)) = O(n^2)$.

(Bousquet and Heinrich 2019)

• If $k \geq 2(\delta+1)$, $diam(\mathcal{C}_k(G)) \leq \delta \cdot n$. (Bousquet and Perarnau 2016)

$$\delta = \max_{H \subseteq D} \min_{v \in V(H)} \min(d_H^-(v), d_H^+(v))$$

- If $k \ge \delta + 2$, then *D* is *k*-mixing.
- Conjecture: $diam(\mathcal{D}_k(D)) = O(n^2)$
- If $k \geq \frac{3}{2}(\delta + 1)$, $diam(\mathcal{D}_k(D)) = O(n^2)$.
- If $k \geq 2(\delta + 1)$, $diam(\mathcal{D}_k(D)) \leq \delta \cdot n$. (Bousquet, Havet, Nisse, P. and Reinald 2024)
- If $k \geq \delta + 2$, $diam(\mathcal{D}_k(D)) = O_{\delta}(n^{\delta+1})$.

 (Nisse, P. and Sau 2024)

Digraph recolouring - bounded degeneracy

Undirected graphs

$$\delta = \max_{H \subseteq G} \min_{v \in V(H)} d_H(v)$$

- If $k \geq \delta + 2$, then G is k-mixing. (Bonsma and Cereceda 2007 ; Dyer et al. 2006)
- Conjecture: $diam(C_k(G)) = O(n^2)$ (Cereceda 2007)
- If $k \geq \delta + 2$, $diam(C_k(G)) = O_{\delta}(n^{\delta+1})$.
- If $k \geq \frac{3}{2}(\delta + 1)$, $diam(C_k(G)) = O(n^2)$.
 - (Bousquet and Heinrich 2019)
- If $k \geq 2(\delta+1)$, $diam(\mathcal{C}_k(G)) \leq \delta \cdot n$. (Bousquet and Perarnau 2016)

$$\delta = \max_{H \subseteq D} \min_{v \in V(H)} \min(d_H^-(v), d_H^+(v))$$

- If $k \ge \delta + 2$, then *D* is *k*-mixing.
- Conjecture: $diam(\mathcal{D}_k(D)) = O(n^2)$
- If $k \geq \frac{3}{2}(\delta + 1)$, $diam(\mathcal{D}_k(D)) = O(n^2)$.
- If $k \geq 2(\delta+1)$, $diam(\mathcal{D}_k(D)) \leq \delta \cdot n$. (Bousquet, Havet, Nisse, P. and Reinald 2024)
- If $k \geq \delta + 2$, $diam(\mathcal{D}_k(D)) = O_{\delta}(n^{\delta+1})$.

 (Nisse, P. and Sau 2024)

Digraph recolouring - bounded degeneracy

Undirected graphs

$$\delta = \max_{H \subseteq G} \min_{v \in V(H)} d_H(v)$$

- If $k \geq \delta + 2$, then G is k-mixing. (Bonsma and Cereceda 2007 ; Dyer et al. 2006)
- Conjecture: $diam(C_k(G)) = O(n^2)$ (Cereceda 2007)
- If $k \geq \delta + 2$, $diam(C_k(G)) = O_{\delta}(n^{\delta+1})$.
- If $k \geq \frac{3}{2}(\delta+1)$, $diam(\mathcal{C}_k(G)) = O(n^2)$.

 (Bousquet and Heinrich 2019)
- If $k \geq 2(\delta+1)$, $diam(\mathcal{C}_k(G)) \leq \delta \cdot n$. (Bousquet and Perarnau 2016)

Directed graphs

$$\delta = \max_{H \subseteq D} \min_{v \in V(H)} \min(d_H^-(v), d_H^+(v))$$

- If $k \ge \delta + 2$, then *D* is *k*-mixing.
- Conjecture: $diam(\mathcal{D}_k(D)) = O(n^2)$
- If $k \geq \frac{3}{2}(\delta + 1)$, $diam(\mathcal{D}_k(D)) = O(n^2)$.
- If $k \geq 2(\delta+1)$, $diam(\mathcal{D}_k(D)) \leq \delta \cdot n$. (Bousquet, Havet, Nisse, P. and Reinald 2024)
- If $k \geq \delta+2$, $diam(\mathcal{D}_k(D)) = O_\delta(n^{\delta+1})$. (Nisse, P. and Sau 2024)

Directed Brooks' Theorem

Theorem (Brooks 1941)

Let G be a connected graph, then $\chi(G) \leq \Delta(G)$ unless G is an odd cycle or a complete graph.

 $\Delta = 2$, $\chi = 3$

 $\Delta = n - 1$, $\chi = n$

Directed Brooks' Theorem

Theorem (Brooks 1941)

Let G be a connected graph, then $\chi(G) \leq \Delta(G)$ unless G is an odd cycle or a complete graph.

$$\Delta_{\max}(D) = \max_{v \in V(D)} \max(d^-(v), d^+(v)).$$

Theorem (Mohar 2010)

Let D be a connected digraph, then $\vec{\chi}(D) \leq \Delta_{\max}(D)$ unless D is a bidirected odd cycle, a bidirected complete graph, or a directed cycle.

 $\Delta_{\text{max}} = 2$, $\vec{\chi} = 3$

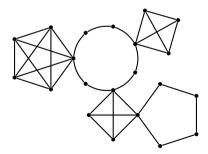
 $\Delta_{\text{max}} = n - 1, \ \vec{\chi} = n$

 $\Delta_{\text{max}} = 1$, $\vec{\chi} = 2$

List assignment L: a list of available colours L(v) for every vertex v. L-colouring: a colouring α s.t. $\alpha(v) \in L(v)$ for every vertex v.

Theorem (Borodin; Erdős et al. 1979)

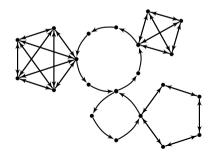
Let G be a connected graph and L a list assignment such that $\forall v \in V(G)$, $|L(v)| \ge d(v)$. If G is not L-colourable, it must be a Gallai tree.

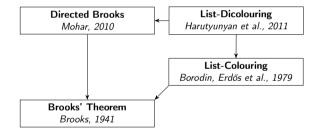


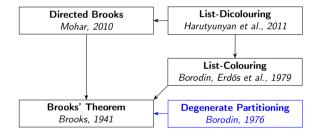
List assignment L: a list of available colours L(v) for every vertex v. L-dicolouring: a dicolouring α s.t. $\alpha(v) \in L(v)$ for every vertex v.

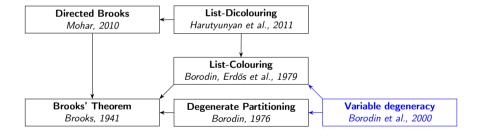
Theorem (Harutyunyan and Mohar 2011)

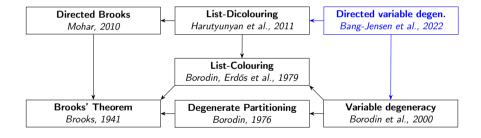
Let D be a connected digraph and L a list assignment such that $\forall v \in V(D)$, $|L(v)| \ge \max(d^-(v), d^+(v))$. If D is not L-dicolourable, then it is a directed Gallai tree.

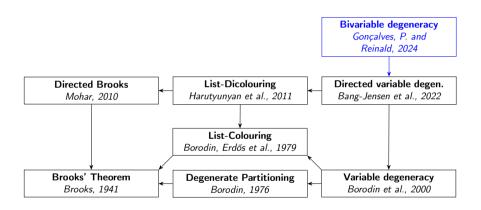


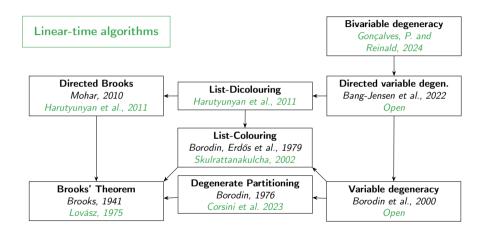












A digraph D is f-degenerate, for $f: V(D) \to \mathbb{N}^2$, if every non-empty subdigraph H of D contains a vertex $v \in V(H)$ s.t.

$$d^-(v) < f^-(v)$$
 or $d^+(v) < f^+(v)$.

Example: D is acyclic $\Leftrightarrow D$ is (1,1)-degenerate.

A digraph D is F-dicolourable, for $F = (f_1, \ldots, f_s)$, if there exists a partition V_1, \ldots, V_s of V(D) s.t. $D[V_i]$ is f_i -degenerate.

Examples

- $\vec{\chi}(D) \leq s \Leftrightarrow D$ is *F*-dicolourable where $f_i = (1,1)$ for every $i \in [s]$.
- If L is a list-assignment, D is L-dicolourable \Leftrightarrow D is F-dicolourable where

$$f_i(v) = \begin{cases} (1,1) & \text{if } i \in L(v) \\ (0,0) & \text{otherwise.} \end{cases}$$

A digraph D is f-degenerate, for $f: V(D) \to \mathbb{N}^2$, if every non-empty subdigraph H of D contains a vertex $v \in V(H)$ s.t.

$$d^-(v) < f^-(v)$$
 or $d^+(v) < f^+(v)$.

Example: D is acyclic $\Leftrightarrow D$ is (1,1)-degenerate.

A digraph D is F-dicolourable, for $F = (f_1, \ldots, f_s)$, if there exists a partition V_1, \ldots, V_s of V(D) s.t. $D[V_i]$ is f_i -degenerate.

Examples

- $\vec{\chi}(D) \leq s \Leftrightarrow D$ is *F*-dicolourable where $f_i = (1,1)$ for every $i \in [s]$.
- If L is a list-assignment, D is L-dicolourable $\Leftrightarrow D$ is F-dicolourable where

$$f_i(v) = \begin{cases} (1,1) & \text{if } i \in L(v) \\ (0,0) & \text{otherwise.} \end{cases}$$

A digraph D is f-degenerate, for $f: V(D) \to \mathbb{N}^2$, if every non-empty subdigraph H of D contains a vertex $v \in V(H)$ s.t.

$$d^-(v) < f^-(v)$$
 or $d^+(v) < f^+(v)$.

Example: D is acyclic $\Leftrightarrow D$ is (1,1)-degenerate.

A digraph D is F-dicolourable, for $F = (f_1, \ldots, f_s)$, if there exists a partition V_1, \ldots, V_s of V(D) s.t. $D[V_i]$ is f_i -degenerate.

Examples

- $\vec{\chi}(D) \leq s \Leftrightarrow D$ is *F*-dicolourable where $f_i = (1,1)$ for every $i \in [s]$.
- If L is a list-assignment, D is L-dicolourable $\Leftrightarrow D$ is F-dicolourable where

$$f_i(v) = \left\{ \begin{array}{ll} (1,1) & \text{if } i \in L(v) \\ (0,0) & \text{otherwise.} \end{array} \right.$$

A digraph D is f-degenerate, for $f: V(D) \to \mathbb{N}^2$, if every non-empty subdigraph H of D contains a vertex $v \in V(H)$ s.t.

$$d^-(v) < f^-(v)$$
 or $d^+(v) < f^+(v)$.

Example: D is acyclic $\Leftrightarrow D$ is (1,1)-degenerate.

A digraph D is F-dicolourable, for $F = (f_1, \ldots, f_s)$, if there exists a partition V_1, \ldots, V_s of V(D) s.t. $D[V_i]$ is f_i -degenerate.

Examples:

- $\vec{\chi}(D) \leq s \Leftrightarrow D$ is *F*-dicolourable where $f_i = (1,1)$ for every $i \in [s]$.
- If L is a list-assignment, D is L-dicolourable \Leftrightarrow D is F-dicolourable where

$$f_i(v) = \begin{cases} (1,1) & \text{if } i \in L(v) \\ (0,0) & \text{otherwise.} \end{cases}$$

A digraph D is f-degenerate, for $f: V(D) \to \mathbb{N}^2$, if every non-empty subdigraph H of D contains a vertex $v \in V(H)$ s.t.

$$d^-(v) < f^-(v)$$
 or $d^+(v) < f^+(v)$.

Example: D is acyclic $\Leftrightarrow D$ is (1,1)-degenerate.

A digraph D is F-dicolourable, for $F = (f_1, \ldots, f_s)$, if there exists a partition V_1, \ldots, V_s of V(D) s.t. $D[V_i]$ is f_i -degenerate.

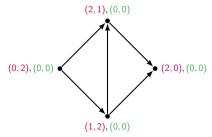
Examples:

- $\vec{\chi}(D) \leq s \Leftrightarrow D$ is *F*-dicolourable where $f_i = (1,1)$ for every $i \in [s]$.
- If L is a list-assignment, D is L-dicolourable \Leftrightarrow D is F-dicolourable where

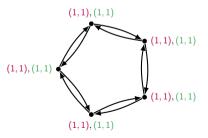
$$f_i(v) = \begin{cases} (1,1) & \text{if } i \in L(v) \\ (0,0) & \text{otherwise.} \end{cases}$$

(D, F) is a hard pair if:

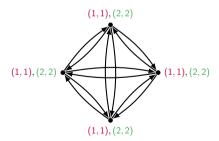
• D is any digraph, and $\exists i \in [s]$, $f_i(v) = (d^-(v), d^+(v))$ and $f_j(v) = (0, 0)$ for $j \neq i$;



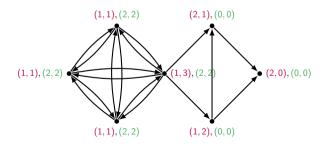
- D is any digraph, and $\exists i \in [s]$, $f_i(v) = (d^-(v), d^+(v))$ and $f_j(v) = (0, 0)$ for $j \neq i$;
- *D* is a bidirected odd cycle, and $\exists i, j \in [s]$, $f_i(v) = f_j(v) = (1, 1)$ and $f_k(v) = (0, 0)$ for $k \notin \{i, j\}$;



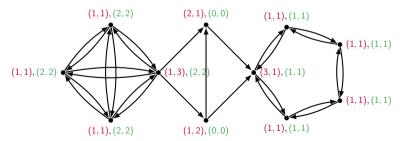
- D is any digraph, and $\exists i \in [s]$, $f_i(v) = (d^-(v), d^+(v))$ and $f_i(v) = (0, 0)$ for $j \neq i$;
- *D* is a bidirected odd cycle, and $\exists i, j \in [s]$, $f_i(v) = f_j(v) = (1, 1)$ and $f_k(v) = (0, 0)$ for $k \notin \{i, j\}$;
- *D* is a bidirected complete graph, the f_i s are constant, symmetric, and they sum to (|V(D)| 1, |V(D)| 1); or



- D is any digraph, and $\exists i \in [s]$, $f_i(v) = (d^-(v), d^+(v))$ and $f_i(v) = (0, 0)$ for $j \neq i$;
- *D* is a bidirected odd cycle, and $\exists i, j \in [s]$, $f_i(v) = f_j(v) = (1, 1)$ and $f_k(v) = (0, 0)$ for $k \notin \{i, j\}$;
- *D* is a bidirected complete graph, the f_i s are constant, symmetric, and they sum to (|V(D)| 1, |V(D)| 1); or
- \bullet (D, F) is obtained from two smaller hard pairs by gluing on a vertex.



- D is any digraph, and $\exists i \in [s]$, $f_i(v) = (d^-(v), d^+(v))$ and $f_i(v) = (0, 0)$ for $j \neq i$;
- *D* is a bidirected odd cycle, and $\exists i, j \in [s]$, $f_i(v) = f_j(v) = (1, 1)$ and $f_k(v) = (0, 0)$ for $k \notin \{i, j\}$;
- *D* is a bidirected complete graph, the f_i s are constant, symmetric, and they sum to (|V(D)| 1, |V(D)| 1); or
- \bullet (D, F) is obtained from two smaller hard pairs by gluing on a vertex.



Generalisation of the Directed Brooks' Theorem via bivariable degeneracy

Theorem (Gonçalves, P., and Reinald 2024)

Let D be a connected digraph and $F = (f_1, ..., f_s)$ be a sequence of functions $f_i \colon V(D) \to \mathbb{N}^2$ such that, for every vertex $v \in V(D)$,

$$\sum_{i=1}^n f_i^-(v) \ge d^-(v)$$
 and $\sum_{i=1}^n f_i^+(v) \ge d^+(v)$.

Then D is F-dicolourable unless (D, F) is a hard pair.

Consequences

- For symmetric functions $(f_i^- = f_i^+) \Rightarrow$ [Bang-Jensen et al. 2022].
- For symmetric functions valued in $\{(0,0),(1,1)\} \Rightarrow [Harutyunyan et al. 2011].$
- For functions constant equal to $(1,1) \Rightarrow [Mohar 2010]$.

Generalisation of the Directed Brooks' Theorem via bivariable degeneracy

Theorem (Gonçalves, P., and Reinald 2024)

Let D be a connected digraph and $F = (f_1, ..., f_s)$ be a sequence of functions $f_i \colon V(D) \to \mathbb{N}^2$ such that, for every vertex $v \in V(D)$,

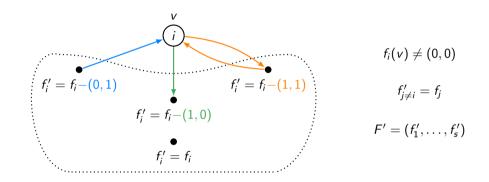
$$\sum_{i=1}^n f_i^-(v) \ge d^-(v)$$
 and $\sum_{i=1}^n f_i^+(v) \ge d^+(v)$.

Then D is F-dicolourable unless (D, F) is a hard pair.

Consequences:

- For symmetric functions $(f_i^- = f_i^+) \Rightarrow$ [Bang-Jensen et al. 2022].
- For symmetric functions valued in $\{(0,0),(1,1)\} \Rightarrow$ [Harutyunyan et al. 2011].
- For functions constant equal to $(1,1) \Rightarrow [Mohar 2010]$.

Main observation for the proof



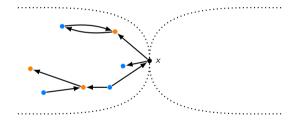
D - v is F'-dicolourable $\Longrightarrow D$ is F-dicolourable.

Let
$$(D, F = (f_1, \ldots, f_s))$$
 be a **non-hard** pair .

• Reduce to a non-hard pair $(D, (f'_1, f'_2))$ by taking $f'_1 = f_i$ and $f'_2 = \sum_{i \neq j} f_j$.

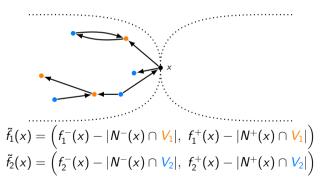
Let $(D, F = (f_1, \ldots, f_s))$ be a **non-hard** pair .

- Reduce to a non-hard pair $(D, (f'_1, f'_2))$ by taking $f'_1 = f_i$ and $f'_2 = \sum_{i \neq j} f_j$.
- **2** Reduce to $(\tilde{D}, (\tilde{f}_1, \tilde{f}_2))$ with \tilde{D} being 2-connected.



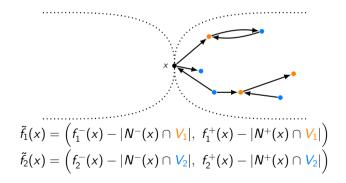
Let $(D, F = (f_1, \dots, f_s))$ be a **non-hard** pair .

- Reduce to a non-hard pair $(D, (f'_1, f'_2))$ by taking $f'_1 = f_i$ and $f'_2 = \sum_{i \neq j} f_j$.
- Reduce to $(\tilde{D}, (\tilde{f}_1, \tilde{f}_2))$ with \tilde{D} being 2-connected.



Let $(D, F = (f_1, \dots, f_s))$ be a **non-hard** pair .

- **9** Reduce to a non-hard pair $(D, (f'_1, f'_2))$ by taking $f'_1 = f_i$ and $f'_2 = \sum_{i \neq j} f_j$.
- Reduce to $(\tilde{D}, (\tilde{f}_1, \tilde{f}_2))$ with \tilde{D} being 2-connected.



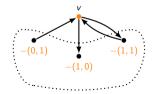
Let $(D, F = (f_1, \ldots, f_s))$ be a **non-hard** pair .

- **1** Reduce to a non-hard pair $(D, (f'_1, f'_2))$ by taking $f'_1 = f_i$ and $f'_2 = \sum_{i \neq j} f_j$.
- **2** Reduce to $(\tilde{D}, (\tilde{f}_1, \tilde{f}_2))$ with \tilde{D} being 2-connected.
- For every vertex v, $\tilde{f}_1(v) \neq (0,0)$ and $\tilde{f}_2(v) \neq (0,0)$.
- ullet UG(\tilde{D}) is not a cycle.

Let $(D, F = (f_1, \ldots, f_s))$ be a **non-hard** pair .

- **1** Reduce to a non-hard pair $(D, (f'_1, f'_2))$ by taking $f'_1 = f_i$ and $f'_2 = \sum_{i \neq j} f_j$.
- **2** Reduce to $(\tilde{D}, (\tilde{f}_1, \tilde{f}_2))$ with \tilde{D} being 2-connected.
- For every vertex v, $\tilde{f}_1(v) \neq (0,0)$ and $\tilde{f}_2(v) \neq (0,0)$.
- ullet UG(\tilde{D}) is not a cycle.

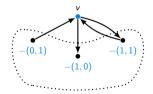
Case 1: $\exists v$, $\tilde{D} - v$ is 2-connected.



Let $(D, F = (f_1, \dots, f_s))$ be a **non-hard** pair .

- **1** Reduce to a non-hard pair $(D, (f'_1, f'_2))$ by taking $f'_1 = f_i$ and $f'_2 = \sum_{i \neq j} f_j$.
- **2** Reduce to $(\tilde{D}, (\tilde{f}_1, \tilde{f}_2))$ with \tilde{D} being 2-connected.
- For every vertex v, $\tilde{f}_1(v) \neq (0,0)$ and $\tilde{f}_2(v) \neq (0,0)$.
- ullet UG(\tilde{D}) is not a cycle.

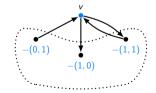
Case 1: $\exists v$, $\tilde{D} - v$ is 2-connected.



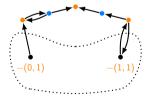
Let $(D, F = (f_1, \dots, f_s))$ be a **non-hard** pair .

- **9** Reduce to a non-hard pair $(D, (f'_1, f'_2))$ by taking $f'_1 = f_i$ and $f'_2 = \sum_{i \neq j} f_j$.
- **2** Reduce to $(\tilde{D}, (\tilde{f}_1, \tilde{f}_2))$ with \tilde{D} being 2-connected.
- For every vertex v, $\tilde{f}_1(v) \neq (0,0)$ and $\tilde{f}_2(v) \neq (0,0)$.
- ullet UG(\tilde{D}) is not a cycle.

Case 1: $\exists v, \tilde{D} - v$ is 2-connected.



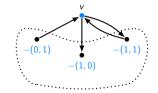
Case 2: $\exists P, \ \tilde{D} - P$ is 2-connected and vertices in P have degree 2 in $\mathrm{UG}(\tilde{D})$.



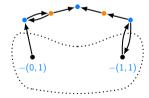
Let $(D, F = (f_1, \dots, f_s))$ be a **non-hard** pair .

- **Q** Reduce to a non-hard pair $(D, (f'_1, f'_2))$ by taking $f'_1 = f_i$ and $f'_2 = \sum_{i \neq j} f_j$.
- **2** Reduce to $(\tilde{D}, (\tilde{f}_1, \tilde{f}_2))$ with \tilde{D} being 2-connected.
- For every vertex v, $\tilde{f}_1(v) \neq (0,0)$ and $\tilde{f}_2(v) \neq (0,0)$.
- ullet UG(\tilde{D}) is not a cycle.

Case 1: $\exists v, \tilde{D} - v$ is 2-connected.



Case 2: $\exists P, \ \tilde{D} - P$ is 2-connected and vertices in P have degree 2 in $\mathrm{UG}(\tilde{D})$.



Strengthening the Directed Brooks' Theorem

$$\Delta_{\max}(D) = \max_{v \in V(D)} \max(d^-(v), d^+(v)).$$

Theorem (Mohar 2010)

Let D be a connected digraph, then $\vec{\chi}(D) \leq \Delta_{\max}(D)$ unless D is a directed cycle, a bidirected odd cycle, or a bidirected complete graph.

$$\Delta_{\min}(D) = \max_{v \in V(D)} \min(d^-(v), d^+(v)).$$

Proposition

Every digraph D satisfies $\vec{\chi}(D) \leq \Delta_{\min}(D) + 1 \leq \Delta_{\max}(D) + 1$

Question: Can we characterise digraphs D with $\vec{\chi}(D) = \Delta_{\min}(D) + 1$?

Strengthening the Directed Brooks' Theorem

$$\Delta_{\max}(D) = \max_{v \in V(D)} \max(d^-(v), d^+(v)).$$

Theorem (Mohar 2010)

Let D be a connected digraph, then $\vec{\chi}(D) \leq \Delta_{\max}(D)$ unless D is a directed cycle, a bidirected odd cycle, or a bidirected complete graph.

$$\Delta_{\min}(D) = \max_{v \in V(D)} \min(d^-(v), d^+(v)).$$

Proposition

Every digraph D satisfies $\vec{\chi}(D) \leq \Delta_{\min}(D) + 1 \leq \Delta_{\max}(D) + 1$.

Question: Can we characterise digraphs D with $\vec{\chi}(D) = \Delta_{\min}(D) + 1$?

Strengthening the Directed Brooks' Theorem

$$\Delta_{\max}(D) = \max_{v \in V(D)} \max(d^-(v), d^+(v)).$$

Theorem (Mohar 2010)

Let D be a connected digraph, then $\vec{\chi}(D) \leq \Delta_{\max}(D)$ unless D is a directed cycle, a bidirected odd cycle, or a bidirected complete graph.

$$\Delta_{\min}(D) = \max_{v \in V(D)} \min(d^-(v), d^+(v)).$$

Proposition

Every digraph D satisfies $\vec{\chi}(D) \leq \Delta_{\min}(D) + 1 \leq \Delta_{\max}(D) + 1$.

Question: Can we characterise digraphs D with $\vec{\chi}(D) = \Delta_{\min}(D) + 1$?

Analogues for Δ_{min}

Theorem (Aboulker and Aubian 2022)

Deciding $\vec{\chi}(D) \leq \Delta_{\min}(D)$ is an NP-complete problem.

⇒ No easy characterisation unless P=NP, but we can give a necessary condition:

Theorem (P. 2023)

Let D be a digraph with $\vec{\chi}(D) = \Delta_{\min}(D) + 1$, then:

- $\Delta_{\min}(D) \leq 1$, or
- $\Delta_{\min}(D) = 2$ and D contains $\overrightarrow{K_2}$, or
- ullet $\Delta_{\min}(D) \geq 3$ and D contains $\overleftarrow{K_s} \Rightarrow \overleftarrow{K_t}$, for some s, t with $s + t = \Delta_{\min}(D) + 1$.

Analogues for Δ_{min}

Theorem (Aboulker and Aubian 2022)

Deciding $\vec{\chi}(D) \leq \Delta_{\min}(D)$ is an NP-complete problem.

 \Rightarrow No easy characterisation unless P=NP, but we can give a necessary condition:

Theorem (P. 2023)

Let D be a digraph with $\vec{\chi}(D) = \Delta_{\min}(D) + 1$, then:

- $\Delta_{\min}(D) \leq 1$, or
- $\Delta_{\min}(D) = 2$ and D contains $\overrightarrow{K_2}$, or
- ullet $\Delta_{\min}(D) \geq 3$ and D contains $\overleftrightarrow{K_s} \Rightarrow \overleftrightarrow{K_t}$, for some s,t with $s+t=\Delta_{\min}(D)+1$.

Consequences on oriented graphs

Theorem (P. 2023)

Let D be a digraph with $\vec{\chi}(D) = \Delta_{\min}(D) + 1$, then:

- $\Delta_{\min}(D) \leq 1$, or
- $\Delta_{\min}(D) = 2$ and D contains $\overrightarrow{K_2}$, or
- $\Delta_{\min}(D) \geq 3$ and D contains $\overset{\longleftarrow}{K_s} \Rightarrow \overset{\longleftarrow}{K_t}$, for some s, t with $s + t = \Delta_{\min}(D) + 1$.

Corollary

Let \vec{G} be an oriented graph with $\Delta_{\min}(\vec{G}) \geq 2$, then $\vec{\chi}(\vec{G}) \leq \Delta_{\min}(\vec{G})$.

Corollary

Let \vec{G} be an orientation of G with $\Delta(G) \leq 5$, then $\vec{\chi}(\vec{G}) \leq 2$

Consequences on oriented graphs

Theorem (P. 2023)

Let D be a digraph with $\vec{\chi}(D) = \Delta_{\min}(D) + 1$, then:

- $\Delta_{\min}(D) \leq 1$, or
- $\Delta_{\min}(D) = 2$ and D contains $\overrightarrow{k_2}$, or
- $\Delta_{\min}(D) \geq 3$ and D contains $\overset{\longleftarrow}{K_s} \Rightarrow \overset{\longleftarrow}{K_t}$, for some s, t with $s + t = \Delta_{\min}(D) + 1$.

Corollary

Let \vec{G} be an oriented graph with $\Delta_{\min}(\vec{G}) \geq 2$, then $\vec{\chi}(\vec{G}) \leq \Delta_{\min}(\vec{G})$.

Corollary

Let \vec{G} be an orientation of G with $\Delta(G) \leq 5$, then $\vec{\chi}(\vec{G}) \leq 2$

Consequences on oriented graphs

Theorem (P. 2023)

Let D be a digraph with $\vec{\chi}(D) = \Delta_{\min}(D) + 1$, then:

- $\Delta_{\min}(D) \leq 1$, or
- $\Delta_{\min}(D) = 2$ and D contains $\overrightarrow{k_2}$, or
- $\Delta_{\min}(D) \geq 3$ and D contains $\overset{\longleftarrow}{K_s} \Rightarrow \overset{\longleftarrow}{K_t}$, for some s, t with $s + t = \Delta_{\min}(D) + 1$.

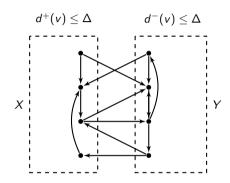
Corollary

Let \vec{G} be an oriented graph with $\Delta_{\min}(\vec{G}) \geq 2$, then $\vec{\chi}(\vec{G}) \leq \Delta_{\min}(\vec{G})$.

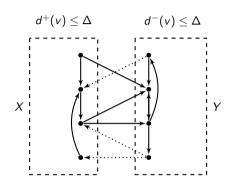
Corollary

Let \vec{G} be an orientation of G with $\Delta(G) \leq 5$, then $\vec{\chi}(\vec{G}) \leq 2$.

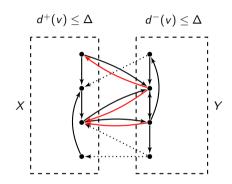
• Assume $\vec{\chi}(D) = \Delta_{\min}(D) + 1 = \Delta + 1 \geq 3$.



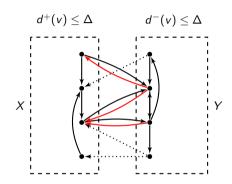
- Assume $\vec{\chi}(D) = \Delta_{\min}(D) + 1 = \Delta + 1 \ge 3$.
- Remove all arcs from Y to X.



- Assume $\vec{\chi}(D) = \Delta_{\min}(D) + 1 = \Delta + 1 \ge 3$.
- Remove all arcs from Y to X.
- Replace each arc from X to Y by a digon.

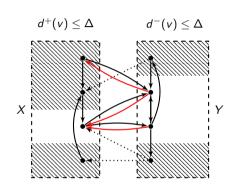


- Assume $\vec{\chi}(D) = \Delta_{\min}(D) + 1 = \Delta + 1 \ge 3$.
- Remove all arcs from Y to X.
- Replace each arc from X to Y by a digon.
- We have $\vec{\chi}(D') \geq \vec{\chi}(D) \geq \Delta + 1$.



- Assume $\vec{\chi}(D) = \Delta_{\min}(D) + 1 = \Delta + 1 \geq 3$.
- Remove all arcs from Y to X.
- Replace each arc from X to Y by a digon.
- We have $\vec{\chi}(D') \geq \vec{\chi}(D) \geq \Delta + 1$.
- Let $H \subseteq D'$ be $(\Delta + 1)$ -dicritical. It must be Δ -diregular since:

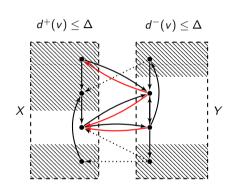
$$\sum_{x \in X_H} d_H^+(x) = \Delta |X_H| = \sum_{x \in X_H} d_H^-(x)$$



- Assume $\vec{\chi}(D) = \Delta_{\min}(D) + 1 = \Delta + 1 \ge 3$.
- Remove all arcs from Y to X.
- Replace each arc from X to Y by a digon.
- We have $\vec{\chi}(D') \geq \vec{\chi}(D) \geq \Delta + 1$.
- Let $H \subseteq D'$ be $(\Delta + 1)$ -dicritical. It must be Δ -diregular since:

$$\sum_{x \in X_H} d_H^+(x) = \Delta |X_H| = \sum_{x \in X_H} d_H^-(x)$$

• $\vec{\chi}(H) = \Delta_{\max}(H) + 1$, the result follows from Directed Brooks' Theorem.



Further research: sublinear bounds for oriented graphs

Conjecture (Erdős and Neumann-Lara 1979)

Let \vec{G} be an oriented graph, then $\vec{\chi}(\vec{G}) = O\left(\frac{\Delta_{\max}(\vec{G})}{\log \Delta_{\max}(\vec{G})}\right)$.

$$\tilde{\Delta}(D) = \mathsf{max}_{v \in V(D)} \, \sqrt{d^-(v) \cdot d^+(v)} \quad \text{(by definition } \Delta_{\mathsf{min}}(D) \leq \tilde{\Delta}(D) \leq \Delta_{\mathsf{max}}(D) \text{)}$$

Theorem (Harutyunyan and Mohar 2011)

There exists $\varepsilon>0$ s.t. every oriented graph \vec{G} with $\tilde{\Delta}(\vec{G})$ large enough satisfies

$$\vec{\chi}(\vec{G}) \leq (1 - \varepsilon) \tilde{\Delta}(\vec{G})$$

Particular case: Is it true that $\vec{\chi}(K_n \square K_n) = O\left(\frac{n}{\log n}\right)$?

Further research: sublinear bounds for oriented graphs

Conjecture (Erdős and Neumann-Lara 1979)

Let \vec{G} be an oriented graph, then $\vec{\chi}(\vec{G}) = O\left(\frac{\Delta_{\max}(\vec{G})}{\log \Delta_{\max}(\vec{G})}\right)$.

$$\tilde{\Delta}(D) = \mathsf{max}_{v \in V(D)} \, \sqrt{d^-(v) \cdot d^+(v)} \ \, \Big(\mathsf{by \ definition} \, \, \Delta_{\mathsf{min}}(D) \leq \tilde{\Delta}(D) \leq \Delta_{\mathsf{max}}(D) \Big).$$

Theorem (Harutyunyan and Mohar 2011)

There exists $\varepsilon>0$ s.t. every oriented graph \vec{G} with $\tilde{\Delta}(\vec{G})$ large enough satisfies

$$\vec{\chi}(\vec{G}) \leq (1 - \varepsilon) \tilde{\Delta}(\vec{G}).$$

Particular case: Is it true that $\vec{\chi}(K_n \square K_n) = O\left(\frac{n}{\log n}\right)$?

Further research: sublinear bounds for oriented graphs

Conjecture (Erdős and Neumann-Lara 1979)

Let \vec{G} be an oriented graph, then $\vec{\chi}(\vec{G}) = O\left(\frac{\Delta_{\max}(\vec{G})}{\log \Delta_{\max}(\vec{G})}\right)$.

$$\tilde{\Delta}(D) = \mathsf{max}_{v \in V(D)} \, \sqrt{d^-(v) \cdot d^+(v)} \ \, \Big(\mathsf{by \ definition} \, \, \Delta_{\mathsf{min}}(D) \leq \tilde{\Delta}(D) \leq \Delta_{\mathsf{max}}(D) \Big).$$

Theorem (Harutyunyan and Mohar 2011)

There exists $\varepsilon>0$ s.t. every oriented graph \vec{G} with $\tilde{\Delta}(\vec{G})$ large enough satisfies

$$\vec{\chi}(\vec{G}) \leq (1 - \varepsilon) \tilde{\Delta}(\vec{G}).$$

Particular case: Is it true that $\vec{\chi}(K_n \square K_n) = O\left(\frac{n}{\log n}\right)$?

Conjecture (Reed 1998): Every graph G satisfies $\chi(G) \leq \left\lceil \frac{\Delta(G) + 1 + \omega(G)}{2} \right\rceil$.

Theorem (Reed 1998)

 $\exists \varepsilon > 0 \text{ s.t. every graph } G \text{ satisfies } \chi(G) \leq \lceil (1-\varepsilon)(\Delta(G)+1) + \varepsilon\omega(G) \rceil$

Conjecture (Kawarabayashi and P. 2024+): Every digraph D satisfies

$$ec{\chi}(D) \leq \left\lceil rac{ ilde{\Delta}(D) + 1 + \overleftrightarrow{\omega}(D)}{2}
ight
ceil.$$

Theorem (Kawarabayashi and P. 2024+)

 $\exists \varepsilon > 0 \text{ s.t. every digraph } D \text{ satisfies } \vec{\chi}(D) \leq \left\lceil (1-\varepsilon)(\tilde{\Delta}(D)+1) + \varepsilon \overleftrightarrow{\omega}(D) \right\rceil.$

Conjecture (Reed 1998): Every graph G satisfies $\chi(G) \leq \left\lceil \frac{\Delta(G) + 1 + \omega(G)}{2} \right\rceil$.

Theorem (Reed 1998)

 $\exists \varepsilon > 0 \text{ s.t. every graph } G \text{ satisfies } \chi(G) \leq \lceil (1 - \varepsilon)(\Delta(G) + 1) + \varepsilon\omega(G) \rceil.$

Conjecture (Kawarabayashi and P. 2024+): Every digraph D satisfies

$$ec{\chi}(D) \leq \left\lceil rac{ ilde{\Delta}(D) + 1 + \overleftrightarrow{\omega}(D)}{2}
ight
ceil.$$

Theorem (Kawarabayashi and P. 2024+)

 $\exists \varepsilon > 0 \text{ s.t. every digraph } D \text{ satisfies } \vec{\chi}(D) \leq \Big\lceil (1-\varepsilon)(\tilde{\Delta}(D)+1) + \varepsilon \overleftrightarrow{\omega}(D) \Big\rceil.$

Conjecture (Reed 1998): Every graph G satisfies $\chi(G) \leq \left\lceil \frac{\Delta(G) + 1 + \omega(G)}{2} \right\rceil$.

Theorem (Reed 1998)

 $\exists \varepsilon > 0 \text{ s.t. every graph } G \text{ satisfies } \chi(G) \leq \lceil (1-\varepsilon)(\Delta(G)+1) + \varepsilon\omega(G) \rceil.$

Conjecture (Kawarabayashi and P. 2024+): Every digraph D satisfies

$$ec{\chi}(D) \leq \left\lceil \frac{ ilde{\Delta}(D) + 1 + \overleftrightarrow{\omega}(D)}{2}
ight
ceil.$$

Theorem (Kawarabayashi and P. 2024+)

 $\exists \varepsilon > 0 \text{ s.t. every digraph } D \text{ satisfies } \vec{\chi}(D) \leq \left\lceil (1-\varepsilon)(\tilde{\Delta}(D)+1) + \varepsilon \overleftrightarrow{\omega}(D) \right\rceil.$

Conjecture (Reed 1998): Every graph G satisfies $\chi(G) \leq \left\lceil \frac{\Delta(G)+1+\omega(G)}{2} \right\rceil$.

Theorem (Reed 1998)

 $\exists \varepsilon > 0 \text{ s.t. every graph } G \text{ satisfies } \chi(G) \leq \lceil (1-\varepsilon)(\Delta(G)+1) + \varepsilon\omega(G) \rceil.$

Conjecture (Kawarabayashi and P. 2024+): Every digraph D satisfies

$$ec{\chi}(D) \leq \left\lceil \dfrac{ ilde{\Delta}(D) + 1 + \overleftrightarrow{\omega}(D)}{2}
ight
ceil.$$

Theorem (Kawarabayashi and P. 2024+)

 $\exists \varepsilon > 0 \text{ s.t. every digraph } D \text{ satisfies } \vec{\chi}(D) \leq \left\lceil (1-\varepsilon)(\tilde{\Delta}(D)+1) + \varepsilon \overleftrightarrow{\omega}(D) \right\rceil.$

Thank you!