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Graph colouring

@ Proper k-colouring of G: partition of V(G) into k independent sets.
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Graph colouring

@ Proper k-colouring of G: partition of V(G) into k independent sets.
@ Chromatic Number x(G): minimum k s.t. G admits a proper k-colouring.
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Digraph dicolouring

@ k-dicolouring of D: partition of V(D) into k acyclic subdigraphs (i.e. no
monochromatic directed cycle).
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Digraph dicolouring

@ k-dicolouring of D: partition of V(D) into k acyclic subdigraphs (i.e. no
monochromatic directed cycle).

e Dichromatic number x(D): minimum k s.t. D admits a k-dicolouring.

N

X(D) =3
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Digraph dicolouring

@ k-dicolouring of D: partition of V(D) into k acyclic subdigraphs (i.e. no
monochromatic directed cycle).

e Dichromatic number x(D): minimum k s.t. D admits a k-dicolouring.

@ Generalizations of proper colouring and chromatic number.
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Digraph dicolouring

e k-dicolouring of D: partition of V(D) into k acyclic subdigraphs (i.e. no
monochromatic directed cycle).

@ Dichromatic number ¥(D): minimum k s.t. D admits a k-dicolouring.

@ Generalizations of proper colouring and chromatic number.
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From graphs to digraphs: main questions

Given any result on graph colouring, two questions arise:
@ Question 1: Does it generalize to all digraphs?
@ Question 2: If it does, can we strengthen it on oriented graphs?
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From graphs to digraphs: examples (1/2)

w(G) : size of a largest clique. @
Hole: induced cycle of length at least 4. Cliaue
Antihole: complementary of a hole. q

G is perfect if x(H) = w(H) holds for every induced subgraph H of G.

Theorem (Strong Perfect Graph Theorem, Chudnovsky et al. 2006)

A graph G is perfect iff G contains neither any odd hole nor any odd antihole. J

Odd antihole

Odd hole
WZQVX:3 WZ%,XZ%I
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From graphs to digraphs: examples (1/2)
W (D) : size of the largest biclique. @
Bidirected hole: a hole in the symmetric part of D.
Bidirected antihole: an antihole in the symmetric part of D.
D is perfect if Y(H) = @ (H) holds for every induced subdigraph H of D.

Biclique

Theorem (Andres and Hochstattler 2015)

A digraph D is perfect iff D contains neither any bidirected odd hole, nor any
bidirected odd antihole, nor any induced directed cycle of length at least 3.

' *
Bidirected odd hole Bidirected odd antihole Induced directed cycle
=2 y>3 W=l g=nit T=1x=2
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From graphs to digraphs: examples (2/2)
A (di)graph is planar if it can be drawn on the plane without crossing edges.

Theorem (Four Colour Theorem, Appel and Haken 1976)
Every planar graph G satisfies x(G) < 4. J
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From graphs to digraphs: examples (2/2)
A (di)graph is planar if it can be drawn on the plane without crossing edges.

Theorem (Four Colour Theorem, Appel and Haken 1976)
Every planar graph G satisfies x(G) < 4.

Corollary
Every planar digraph D satisfies Y(D) < 4.

Remark: Best possible because of Ay
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From graphs to digraphs: examples (2/2)
A (di)graph is planar if it can be drawn on the plane without crossing edges.

Theorem (Four Colour Theorem, Appel and Haken 1976)
Every planar graph G satisfies x(G) < 4.

Corollary
Every planar digraph D satisfies Y(D) < 4.

Remark: Best possible because of Ay

Conjecture (Neumann-Lara 1982) J

Every oriented (no digon) planar graph G satisfies Y(G) < 2.

Remark: Y(G) < 3 follows from the density of planar graphs.
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Contributions

Chordal graphs

@ Dichromatic number of chordal graphs, [Bessy, Havet, and P., 2023]
On the Directed Brooks’ Theorem
@ Brooks-type colourings of digraphs in linear time, [Gongalves, P., and Reinald, 2024]

@ Strengthening the Directed Brooks’ Theorem for oriented graphs and consequences on digraph
redicolouring, [P., JGT, 2023]
Density and structure of dicritical digraphs

@ Minimum number of arcs in k-critical digraphs with order at most 2k — 1,
[P. and Stiebitz, DM, 2024]

@ On the minimum number of arcs in 4-dicritical oriented graphs, [Havet, P., and Rambaud, 2023]

@ The 3-dicritical semicomplete digraphs, [Havet, P., and Hérsch, 2024]

@ Subdivisions in large critical digraphs, [P. and Rambaud, 2024]
Digraph redicolouring

@ Digraph redicolouring, [Bousquet, Havet, Nisse, P., and Reinald, EJC, 2024]

@ Redicolouring digraphs: directed treewidth and cycle-degeneracy, [Nisse, P., and Sau, DAM, 2024]

Picasarri-Arrieta Lucas Digraph colouring



Contributions

Chordal graphs

@ Dichromatic number of chordal graphs, [Bessy, Havet, and P., 2023]
On the Directed Brooks’ Theorem
@ Brooks-type colourings of digraphs in linear time, [Gongalves, P., and Reinald, 2024]

@ Strengthening the Directed Brooks’ Theorem for oriented graphs and consequences on digraph
redicolouring, [P., JGT, 2023]
Density and structure of dicritical digraphs

@ Minimum number of arcs in k-critical digraphs with order at most 2k — 1,
[P. and Stiebitz, DM, 2024]

® On the minimum number of arcs in 4-dicritical oriented graphs, [Havet, P., and Rambaud, 2023]

@ The 3-dicritical semicomplete digraphs, [Havet, P., and Hérsch, 2024]

@ Subdivisions in large critical digraphs, [P. and Rambaud, 2024]
Digraph redicolouring

@ Digraph redicolouring, [Bousquet, Havet, Nisse, P., and Reinald, EJC, 2024]

@ Redicolouring digraphs: directed treewidth and cycle-degeneracy, [Nisse, P., and Sau, DAM, 2024]
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Contributions

Chordal graphs

@ Dichromatic number of chordal graphs, [Bessy, Havet, and P., 2023]
On the Directed Brooks’ Theorem
@ Brooks-type colourings of digraphs in linear time, [Gongalves, P., and Reinald, 2024]

@ Strengthening the Directed Brooks’ Theorem for oriented graphs and consequences on digraph
redicolouring, [P., JGT, 2023]
Density and structure of dicritical digraphs
@ Minimum number of arcs in k-critical digraphs with order at most 2k — 1,
[P. and Stiebitz, DM, 2024]
® On the minimum number of arcs in 4-dicritical oriented graphs, [Havet, P., and Rambaud, 2023]
@ The 3-dicritical semicomplete digraphs, [Havet, P., and Hérsch, 2024]
@ Subdivisions in large critical digraphs, [P. and Rambaud, 2024]

Digraph redicolouring
@ Digraph redicolouring, [Bousquet, Havet, Nisse, P., and Reinald, EJC, 2024]
@ Redicolouring digraphs: directed treewidth and cycle-degeneracy, [Nisse, P., and Sau, DAM, 2024]

u]
@
I
ul
it

Picasarri-Arrieta Lucas Digraph colouring



Minimum density of dicritical digraphs

Definitions
@ A graph G is k-critical if x(G) = k and x(H) < k holds for every H C G.
e A digraph D is k-dicritical if X(D) = k and x(H) < k holds for every H C D.
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Minimum density of dicritical digraphs

Definitions
@ A graph G is k-critical if x(G) = k and x(H) < k holds for every H C G.
e A digraph D is k-dicritical if X(D) = k and x(H) < k holds for every H C D.

® gi(n): minimum number of edges in an n-vertex k-critical graph.
@ di(n): minimum number of arcs in an n-vertex k-dicritical digraph.

@ 0x(n): minimum number of arcs in an n-vertex k-dicritical oriented graph.
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Minimum density of dicritical digraphs

Definitions
@ A graph G is k-critical if x(G) = k and x(H) < k holds for every H C G.
e A digraph D is k-dicritical if X(D) = k and x(H) < k holds for every H C D.

® gi(n): minimum number of edges in an n-vertex k-critical graph.
@ di(n): minimum number of arcs in an n-vertex k-dicritical digraph.

@ 0x(n): minimum number of arcs in an n-vertex k-dicritical oriented graph.

Trivial bounds
@ di(n) <2-gi(n)
@ ox(n) > dk(n)
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Minimum density of dicritical digraphs

Definitions
@ A graph G is k-critical if x(G) = k and x(H) < k holds for every H C G.
e A digraph D is k-dicritical if X(D) = k and x(H) < k holds for every H C D.

® gi(n): minimum number of edges in an n-vertex k-critical graph.

dk(n): minimum number of arcs in an n-vertex k-dicritical digraph.

ok(n): minimum number of arcs in an n-vertex k-dicritical oriented graph.

Trivial bounds
@ di(n) <2-gi(n)
@ ox(n) > dk(n)

Conjectures (Kostochka and Stiebitz 2020)
@ di(n) =2 - gk(n) and equality holds only for bidirected graphs (unless n = k + 1).
@ ok(n) > (1+¢)- di(n) when k > 3 and n large enough.
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Minimum density of dicritical digraphs — known results

e Undirected case: gi(n) > 1(k — 2;)n— ;g’;:i’; [Kostochka and Yancey 2014]
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Minimum density of dicritical digraphs — known results

e Undirected case: gi(n) > 1(k — 2;)n— ;E’; ‘;’). [Kostochka and Yancey 2014]

e Conjecture: dy(n) > (k — 27)n— k(kk 13) [Kostochka and Stiebitz 2020]
known for k € {2,3,4}, open for k > 5.
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Minimum density of dicritical digraphs — known results

e Undirected case: gi(n) > 1(k — 2;)n— ;E’;:i’g [Kostochka and Yancey 2014]

e Conjecture: dy(n) > (k — 27)n— k(kk 13) [Kostochka and Stiebitz 2020]
known for k € {2,3,4}, open for k > 5.

e Best bound: di(n) > (k—3 + Z;)n % [Aboulker and Vermande 2022]
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Minimum density of dicritical digraphs — known results

Undirected case: gi(n) > 1(k — 25)n— ;E’;:ig [Kostochka and Yancey 2014]

Conjecture: di(n) > (k — 25)n — k(kk 13) [Kostochka and Stiebitz 2020]
known for k € {2,3,4}, open for k > 5.

Best bound: di(n) > (k—% + 27)n % [Aboulker and Vermande 2022]

Conjecture: ox(n) > (1+¢) - dx(n) when k > 3 and n large enough.
[Kostochka and Stiebitz 2020]

known for k = 3. [Aboulker, Bellitto, Havet and Rambaud 2022]
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Minimum density of dicritical digraphs — contributions

Theorem (P. and Stiebitz 2024)

For every n,k,p e Nwithn=k+p and2<p <k —1, d(n) =n(n—1) —2(p*> + 1)
and equality holds only for bidirected Dirac’s graphs.
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Minimum density of dicritical digraphs — contributions

Theorem (P. and Stiebitz 2024)

For every n,k,p e Nwithn=k+p and2<p <k —1, d(n) =n(n—1) —2(p*> + 1)
and equality holds only for bidirected Dirac’s graphs.

Theorem (Havet, P. and Rambaud 2023)

1 4
For every n € N, dy(n) > ?On —3 and equality holds only for bidirected Ore’s graphs.

v
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Minimum density of dicritical digraphs — contributions

Theorem (P. and Stiebitz 2024)

For every n,k,p e Nwithn=k+p and2<p <k —1, d(n) =n(n—1) —2(p*> + 1)
and equality holds only for bidirected Dirac’s graphs.

Theorem (Havet, P. and Rambaud 2023)

1 4
For every n € N, dy(n) > ?On —3 and equality holds only for bidirected Ore’s graphs.

v

Theorem (Havet, P. and Rambaud 2023)

1 1
For every n € N, o4(n) > <?0+51> n—1.
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Digraph redicolouring

Dk(D): the k-dicolouring graph of D:
@ V(Dk(D)) are the k-dicolourings of D,
@ ;v € E(Dk(D)) if v; = ~; except on one vertex.

7 - . M N 7 - . M N 7’ - . > N
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' \ ! \ ! \
! | E— | I— 1
\ I \ | \ )
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Digraph redicolouring

Dk(D): the k-dicolouring graph of D:
@ V(Dk(D)) are the k-dicolourings of D,
@ ;v € E(Dk(D)) if v; = ~; except on one vertex.

@ 7@ P TN

’ \ ’ \ 4 \
1 \ 1 \ 1 \
! | I _ 1
\ ' \ ] \ 1
\O—> \O—>0 \O—>0
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- ~ ’ ~ ’
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Ck(G): the k-colouring graph of G is defined similarly with proper k-colourings.
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Digraph redicolouring

Recolouring sequence: a path in Di(D).

NN N NN

D is k-mixing: Dx(D) is connected.
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Digraph redicolouring

Recolouring sequence: a path in Di(D).

NN N NN

D is k-mixing: Dx(D) is connected.
Main questions:
@ Is D k-mixing ?
@ Can we bound the diameter of Dx(D) ?
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Digraph recolouring — bounded degeneracy

Undirected graphs

0 =max min du(v)
HCG veV(H)

o If k> 6+ 2, then G is k-mixing.

(Bonsma and Cereceda 2007 ; Dyer et al. 2006)
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Digraph recolouring — bounded degeneracy

Undirected graphs

0 =max min du(v)
HCG veV(H)

o If k> 6+ 2, then G is k-mixing.
(Bonsma and Cereceda 2007 ; Dyer et al. 2006)

@ Conjecture: diam(Cx(G)) = O(n?)

(Cereceda 2007)
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Digraph recolouring — bounded degeneracy

Undirected graphs

0 =max min dy(v)
HCG veV(H)

o If k> 6+ 2, then G is k-mixing.
(Bonsma and Cereceda 2007 ; Dyer et al. 2006)
Conjecture: diam(Cx(G)) = O(n?)

(Cereceda 2007)
If k> 6+2, diam(Ck(G)) = Os(n°*).
If k> 2(6+ 1), diam(C(G)) = O(n?).

(Bousquet and Heinrich 2019)
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Digraph recolouring — bounded degeneracy

Undirected graphs

0 =max min du(v)
HCG veV(H)
o If k> 6+ 2, then G is k-mixing.
(Bonsma and Cereceda 2007 ; Dyer et al. 2006)
@ Conjecture: diam(Cx(G)) = O(n?)
(Cereceda 2007)
@ If k >3+ 2, diam(Ck(G)) = Os(n°).
o If k> 2(6 4 1), diam(Ci(G)) = O(n?).
(Bousquet and Heinrich 2019)
@ If k>2(6+1), diam(Ck(G)) < - n.
(Bousquet and Perarnau 2016)
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Digraph recolouring — bounded degeneracy

Undirected graphs Directed graphs
p— H _ . . p— +
0= wgévgv(r}_l) dun(v) 0= wgaz)(vénvl&)mm(d,_, (v),dy(v))

o If k> 6+ 2, then G is k-mixing.
(Bonsma and Cereceda 2007 ; Dyer et al. 2006)
@ Conjecture: diam(Cx(G)) = O(n?) If k> 3(6+ 1), diam(Dy(D)) = O(n?).
(Cereceda 2007) If k> 2(5 + 1), diam(Dk(D)) <éd-n.
e lfk>5+2 diam(Ck(G)) — 05(n5+1). (Bousquet, Havet, Nisse, P. and Reinald 2024)
o If k> 2(6 4 1), diam(Ci(G)) = O(n?).
(Bousquet and Heinrich 2019)
o If k > 2(6 +1), diam(Ck(G)) < & - n.
(Bousquet and Perarnau 2016)

If k> 6+ 2, then D is k-mixing.
Conjecture: diam(Dy(D)) = O(n?)
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Digraph recolouring — bounded degeneracy

Undirected graphs Directed graphs
p— H _ . . p— +
0= ?SEVQ)PH) dun(v) 0= Wégvénvl&)mm(d,, (v),dy(v))

o If k> 6+ 2, then G is k-mixing.
(Bonsma and Cereceda 2007 ; Dyer et al. 2006)
@ Conjecture: diam(Cx(G)) = O(n?) If k> 3(6+ 1), diam(Dy(D)) = O(n?).
(Cereceda 2007) If k> 2((5 + 1), diam(Dk(D)) <éd-n.
e lfk>5+2 diam(Ck(G)) — 05(n5+1). (Bousquet, Havet, Nisse, P. and Reinald 2024)
o If k> 2(6 4 1), diam(Ci(G)) = O(n?).
(Bousquet and Heinrich 2019)
o If k > 2(6 +1), diam(Ck(G)) < & - n.
(Bousquet and Perarnau 2016)

If k> 6+ 2, then D is k-mixing.
Conjecture: diam(Dy(D)) = O(n?)

@ If k> 842, diam(Dy(D)) = Os(n°*?).
(Nisse, P. and Sau 2024)
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Directed Brooks' Theorem

Theorem (Brooks 1941)

Let G be a connected graph, then x(G) < A(G) unless G is an odd cycle or a
complete graph.

A=2x=3 A=n—-1x=n
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Directed Brooks' Theorem

Theorem (Brooks 1941)

Let G be a connected graph, then x(G) < A(G) unless G is an odd cycle or a
complete graph.

Ama><(D) = vén\/a(XD) max(d_(v), d+(v))'

Theorem (Mohar 2010)

Let D be a connected digraph, then (D) < Anax(D) unless D is a bidirected odd
cycle, a bidirected complete graph, or a directed cycle.

J=

Apax=2,X=3 Apax=n—1,xX=n Anx=1Y=2
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Generalisations of Brooks' Theorem (1/2)

List assignment L: a list of available colours L(v) for every vertex v.
L-colouring: a colouring a s.t. a(v) € L(v) for every vertex v.

Theorem (Borodin ; Erdés et al. 1979)

Let G be a connected graph and L a list assignment such that Vv € V(G),
[L(v)| > d(v). If G is not L-colourable, it must be a Gallai tree.
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Generalisations of Brooks' Theorem (1/2)

List assignment L: a list of available colours L(v) for every vertex v.
L-dicolouring: a dicolouring « s.t. a(v) € L(v) for every vertex v.

Theorem (Harutyunyan and Mohar 2011)

Let D be a connected digraph and L a list assignment such that Vv € V(D),
|L(v)] > max(d~(v),d"(v)). If D is not L-dicolourable, then it is a directed Gallai

tree.
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Generalisations of Brooks' Theorem (2/2)

Directed Brooks < List-Dicolouring
Mohar, 2010 Harutyunyan et al., 2011

l

List-Colouring
Borodin, Erdés et al., 1979

Brooks’ Theorem
Brooks, 1941
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Generalisations of Brooks' Theorem (2/2)

Directed Brooks < List-Dicolouring
Mohar, 2010 Harutyunyan et al., 2011

l

List-Colouring
Borodin, Erdés et al., 1979

Brooks’ Theorem Degenerate Partitioning
Brooks, 1941 Borodin, 1976
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Generalisations of Brooks' Theorem (2/2)

Directed Brooks < List-Dicolouring
Mohar, 2010 Harutyunyan et al., 2011

l

List-Colouring
Borodin, Erdés et al., 1979

Brooks’ Theorem Degenerate Partitioning | Variable degeneracy
Brooks, 1941 Borodin, 1976 Borodin et al., 2000
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Generalisations of Brooks' Theorem (2/2)

Directed Brooks
Mohar, 2010

List-Dicolouring
Harutyunyan et al., 2011

Directed variable degen.
Bang-Jensen et al., 2022

l

List-Colouring
Borodin, Erdés et al., 1979

Brooks’ Theorem
Brooks, 1941

Degenerate Partitioning
Borodin, 1976

Variable degeneracy
Borodin et al., 2000
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Generalisations of Brooks' Theorem (2/2)

Bivariable degeneracy
Gongalves, P. and
Reinald, 2024

Directed Brooks
Mohar, 2010

List-Dicolouring
Harutyunyan et al., 2011

Directed variable degen.
Bang-Jensen et al., 2022

l

List-Colouring
Borodin, Erdés et al., 1979

Brooks’ Theorem
Brooks, 1941

Degenerate Partitioning
Borodin, 1976

Variable degeneracy
Borodin et al., 2000
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Generalisations of Brooks' Theorem (2/2)

Bivariable degeneracy
Gongalves, P. and
Reinald, 2024

l

Directed Brooks List-Dicolourin Directed variable degen.
Mohar, 2010 <— g l«—  Bang-Jensen et al., 2022

Harutyunyan et al., 2011 Harutyunyan et al., 2011 Open

l

List-Colouring
Borodin, Erdés et al., 1979
Skulrattanakulcha, 2002

Linear-time algorithms

S Degenerate Partitioning -
Brooks’ Theorem Borodin, 1976 | Variable degeneracy

Brooks, 1941 <] S Borodin et al., 2000
Lovasz, 1975 Corsini et al. 2023 Open
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Bivariable degeneracy and F-dicolouring

A digraph D is f-degenerate, for f : V(D) — N2, if every non-empty subdigraph H of
D contains a vertex v € V(H) s.t.

d=(v) < f (v) or dF(v)<ft(v).
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Bivariable degeneracy and F-dicolouring

A digraph D is f-degenerate, for f : V(D) — N2, if every non-empty subdigraph H of
D contains a vertex v € V(H) s.t.

d=(v) < f (v) or dF(v)<ft(v).

Example: D is acyclic & D is (1,1)-degenerate.
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Bivariable degeneracy and F-dicolouring

A digraph D is f-degenerate, for f : V(D) — N2, if every non-empty subdigraph H of
D contains a vertex v € V(H) s.t.

d=(v) < f (v) or dF(v)<ff(v).

Example: D is acyclic & D is (1,1)-degenerate.

A digraph D is F-dicolourable, for F = (fi,.... f), if there exists a partition V4, ..
of V(D) s.t. D[V;] is f;-degenerate.

LV
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Bivariable degeneracy and F-dicolouring

A digraph D is f-degenerate, for f : V(D) — N2, if every non-empty subdigraph H of
D contains a vertex v € V(H) s.t.

d=(v) < f (v) or dF(v)<ff(v).

Example: D is acyclic & D is (1,1)-degenerate.
A digraph D is F-dicolourable, for F = (fi,....f), if there exists a partition Vq,..., Vi
of V(D) s.t. D[V;] is f;-degenerate.

Examples:
e (D) < s < D is F-dicolourable where f; = (1,1) for every i € [s].
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Bivariable degeneracy and F-dicolouring

A digraph D is f-degenerate, for f : V(D) — N2, if every non-empty subdigraph H of

D contains a vertex v € V(H) s.t.

d=(v) < f (v) or dF(v)<ff(v).

Example: D is acyclic & D is (1,1)-degenerate.

A digraph D is F-dicolourable, for F = (fi,.... f), if there exists a partition V4, ...

of V(D) s.t. D[V;] is f;-degenerate.
Examples:
e Y(D) <s < D is F-dicolourable where f; = (1,1) for every i € [s].
o If Lis a list-assignment, D is L-dicolourable < D is F-dicolourable where

fi(V)Z{ ((1),3) if i e L(v)

(0,0) otherwise.
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Hard pairs
(D, F) is a hard pair if:
e D is any digraph, and 3i € [s], fi(v) = (d(v),d"(v)) and fj(v) = (0,0) for j # i;

(2,1), (0,

AN

0,0)
e (2.0),(0.0)
0,0)

(0,2),(0,0) <
(1,2), (0,
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Hard pairs

(D, F) is a hard pair if:

e D is any digraph, and 3i € [s], fi(v) = (d~ (v),d
@ D is a bidirected odd cycle, and 3/, € [s], fi(v)
fi(v) = (0,0) for k ¢ {i,j};

“(v)) and f;(v) = (0,0) for j # i
:6() (1.1) and
(1,1),(1.1)
1,1),(1,1)
1,1),(1,1)

(L1),(

1,1)
(1,1),(1.1)
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Hard pairs
(D, F) is a hard pair if:
e D is any digraph, and 3i € [s], fi(v) = (d(v),d"(v)) and fj(v) = (0,0) for j # i;
e D is a bidirected odd cycle, and 3i,j € [s], fi(v) = fj(v ) (1,1) and
fi(v) = (0,0) for k ¢ {i,j};

@ D is a bidirected complete graph, the f;s are constant, symmetric, and they sum
to (|V(D)[ - 1,[V(D)| - 1); or

(1.1),(2.2)

—\

(1,1),(2,2) [ e (1,1),(2,2)

1,1),(2,2)
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Hard pairs
(D, F) is a hard pair if:
e D is any digraph, and 3i € [s], fi(v) = (d(v),d"(v)) and fj(v) = (0,0) for j # i;
e D is a bidirected odd cycle, and 3i,j € [s], fi(v) = fj(v ) (1,1) and
fi(v) = (0,0) for k ¢ {i,j};

@ D is a bidirected complete graph, the f;s are constant, symmetric, and they sum
to (|V(D)[ - 1,[V(D)| - 1); or
@ (D, F) is obtained from two smaller hard pairs by gluing on a vertex.

(1,1),(2.2) (2,1),(0,0)
(1,1),(2.2) ———N(1.3),(2.9) e (2,0),(0.0)
(1,1),(2,2) (1,2),(0,0)
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Hard pairs
(D, F) is a hard pair if:
e D is any digraph, and 3i € [s], fi(v) = (d(v),d"(v)) and fj(v) = (0,0) for j # i;
e D is a bidirected odd cycle, and 3i,j € [s], fi(v) = fj(v ) (1,1) and
fi(v) = (0,0) for k ¢ {i,j};

@ D is a bidirected complete graph, the f;s are constant, symmetric, and they sum
to (|V(D)[ - 1,[V(D)| - 1); or
@ (D, F) is obtained from two smaller hard pairs by gluing on a vertex.

(1,1),(2,2) (2,1),(0,0) (1,1),(1,1)

\5 1,1),(1,1)

(1,1),(2,2) [ —%((1,3),(2,9)

o (1,1),(1,1)

(1,1),(2,2) (1,2),(0,0) (1,1),(1.1)

Picasarri-Arrieta Lucas Digraph colouring



Generalisation of the Directed Brooks' Theorem via bivariable degeneracy

Theorem (Gongalves, P., and Reinald 2024)

Let D be a connected digraph and F = (fi,...,f;) be a sequence of functions
f;: V(D) — N? such that, for every vertex v € V(D),

n

Zf )>d (v) and Zf+ ) > dT(v).

Then D is F-dicolourable unless (D, F) is a hard pair.
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Generalisation of the Directed Brooks' Theorem via bivariable degeneracy

Theorem (Gongalves, P., and Reinald 2024)

Let D be a connected digraph and F = (fi,...,f;) be a sequence of functions
f;: V(D) — N? such that, for every vertex v € V(D),

n

Zf )>d (v) and Zf+ ) > dT(v).

Then D is F-dicolourable unless (D, F) is a hard pair.

Consequences:
@ For symmetric functions (£~ = f.*) = [Bang-Jensen et al. 2022].

@ For symmetric functions valued in {(0,0),(1,1)} = [Harutyunyan et al. 2011].
@ For functions constant equal to (1,1) = [Mohar 2010].
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Main observation for the proof
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Sketch of proof

Let (D,F = (f1,...,fs)) be a non-hard pair .

@ Reduce to a non-hard pair (D, (f{,f3)) by taking f{ = f; and £ =>.. f;.

i#j
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Sketch of proof
Let (D,F = (f1,...,f;)) be a non-hard pair .

© Reduce to a non-hard pair (D, (f{, f;)) by taking f{ = f; and f; =3, . f;.
© Reduce to (D, (fi, f)) with D being 2-connected.
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Sketch of proof
Let (D,F = (f1,...,f;)) be a non-hard pair .
© Reduce to a non-hard pair (D, (f{, f;)) by taking f{ = f; and f; =3, . f;.
@ Reduce to (D, (f1, f2)) with D being 2-connected.

RO = (£ = IN() 0 VAL £ (x) = INF( 0 Vi)
B0 = (60 = IN"() N Val, B (x) = INF(x) 0 Vi)
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Sketch of proof
Let (D,F = (f1,...,f;)) be a non-hard pair .
© Reduce to a non-hard pair (D, (f{, f;)) by taking f{ = f; and f; =3, . f;.
@ Reduce to (D, (f1, f2)) with D being 2-connected.

RO = (£ = IN() 0 VAL B (x) = INFG 0 Vi)
B0 = (600 = IN"() N Vel B (x) = INF(x) 0 Vi)
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Sketch of proof

Let (D,F = (f1,...,f;)) be a non-hard pair .

© Reduce to a non-hard pair (D, (f{., f;)) by taking f{ = f; and f; =3, . f;.
© Reduce to (D, (f,, f2)) with D being 2-connected.

© For every vertex v, f1(v) # (0,0) and A(v) # (0,0).

Q UG(D) is not a cycle.
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Sketch of proof

Let (D,F = (f1,...,f;)) be a non-hard pair .

© Reduce to a non-hard pair (D, (f{,f;)) by taking f{ = fiand £ =
© Reduce to (D, (A, f)) with D being 2-connected.

© For every vertex v, f1(v) # (0,0) and A (v) # (0,0).

Q@ UG(D) is not a cycle.

i#j fy.

Case 1: v, D — v is 2-connected.

v
(0,1) ! (1,1)
~(1,0)
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Sketch of proof

Let (D,F = (f1,...,f;)) be a non-hard pair .

© Reduce to a non-hard pair (D, (f{,f;)) by taking f{ = fiand £ =
© Reduce to (D, (A, f)) with D being 2-connected.

© For every vertex v, f1(v) # (0,0) and A (v) # (0,0).

Q@ UG(D) is not a cycle.

i#j fy.

Case 1: v, D — v is 2-connected.

v
—(0,1) ! ~(11)
~(1,0)

Picasarri-Arrieta Lucas Digraph colouring



Sketch of proof

Let (D,F = (f1,...,f)) be a non-hard pair .

© Reduce to a non-hard pair (D, (f{, f;)) by taking f{ = f; and f; =3, .

f;

j.

© Reduce to (D, (1, f2)) with D being 2-connected.

© For every vertex v, f1(v) # (0,0) and f(
Q@ UG(D) is not a cycle.

Case 1: Jv, D — v is 2-connected.

v) #(0,0).

Case 2: 3P, D — P is 2-connected and
vertices in P have degree 2 in UG(D).

Digraph colouring
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Sketch of proof

Let (D,F = (f1,...,f)) be a non-hard pair .

© Reduce to a non-hard pair (D, (f{, f;)) by taking f{ = f; and f; =3, .

f;

j.

© Reduce to (D, (1, f2)) with D being 2-connected.

© For every vertex v, f1(v) # (0,0) and f(
Q@ UG(D) is not a cycle.

Case 1: Jv, D — v is 2-connected.

v) #(0,0).

Case 2: 3P, D — P is 2-connected and
vertices in P have degree 2 in UG(D).

T
~(0.1) :

Digraph colouring
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Strengthening the Directed Brooks' Theorem
Anax(D) = max max(d™(v), d*(v)).

Theorem (Mohar 2010)

Let D be a connected digraph, then (D) < Anax(D) unless D is a directed cycle, a
bidirected odd cycle, or a bidirected complete graph.
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Strengthening the Directed Brooks' Theorem
Anax(D) = max max(d™(v), d*(v)).

Theorem (Mohar 2010)

Let D be a connected digraph, then (D) < Anax(D) unless D is a directed cycle, a
bidirected odd cycle, or a bidirected complete graph.

Anin(D) = vg1va(>é) min(d~(v),d"(v)).

Proposition
Every digraph D satisfies X(D) < Apin(D) + 1 < Apax(D) + 1. J
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Strengthening the Directed Brooks' Theorem
Anax(D) = max max(d™(v), d*(v)).

Theorem (Mohar 2010)

Let D be a connected digraph, then (D) < Anax(D) unless D is a directed cycle, a
bidirected odd cycle, or a bidirected complete graph.

Anin(D) = vg1va(>é) min(d~(v),d"(v)).

Proposition
Every digraph D satisfies X(D) < Apin(D) + 1 < Apax(D) + 1. J

Question: Can we characterise digraphs D with X(D) = Amin(D) + 17
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Analogues for Apnin

Theorem (Aboulker and Aubian 2022)

Deciding X(D) < Amin(D) is an NP-complete problem.

— No easy characterisation unless P=NP, but we can give a necessary condition:
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Analogues for Apnin

Theorem (Aboulker and Aubian 2022)
Deciding X(D) < Amin(D) is an NP-complete problem. J

— No easy characterisation unless P=NP, but we can give a necessary condition:

Theorem (P. 2023)

Let D be a digraph with (D) = Amin(D) + 1, then:
e Anin(D) <1, or

e Anin(D) =2 and D contains ? or
—
@ Anin(D) > 3 and D contains ?: = K., for some s, t with s +t = Apin(D) + 1.
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Consequences on oriented graphs

Theorem (P. 2023)
Let D be a digraph with X(D) = Anmin(D) + 1, then:
e Anin(D) <1, or
@ Anin(D) =2 and D contains ? or
@ Anin(D) >3 and D contains K) = % for some s, t with s +t = Ayin(D) + 1.

v
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Consequences on oriented graphs

Theorem (P. 2023)
Let D be a digraph with X(D) = Anmin(D) + 1, then:
e Anin(D) <1, or
@ Anin(D) =2 and D contains ? or
@ Anin(D) >3 and D contains ?s = ﬁ for some s, t with s +t = Ayin(D) + 1.

v

Corollary

Let G be an oriented graph with Amin(G) > 2, then X(G) < Amin(G).
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Consequences on oriented graphs

Theorem (P. 2023)
Let D be a digraph with X(D) = Anmin(D) + 1, then:
e Anin(D) <1, or
@ Anin(D) =2 and D contains ? or
@ Anin(D) >3 and D contains ?s = ﬁ for some s, t with s +t = Ayin(D) + 1.

v

Corollary

Let G be an oriented graph with Amin(G) > 2, then X(G) < Amin(G).

Corollary

Let G be an orientation of G with A(G) < 5, then {(G) < 2.
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Proof

@ Assume X(D) = Amin(D)+1=A+12>3. dt(v) <A d=(v) <A
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Proof

@ Assume X(D) = Amin(D)+1=A+12>3.

@ Remove all arcs from Y to X.
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Proof

@ Assume Y(D) = Amin(D) +1=A+123. dt(v) <A d=(v) <A

@ Remove all arcs from Y to X. - \ REECEEEEE
1 1

@ Replace each arc from X to Y by a digon. ! l : I'I !
| N 1 :
| o<1 TS '
! 1

X, l ! ! I Y

: 5 ¢ :
X : | l :
1 1 | X
: S .I'.'.':. 1
1 | 1
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Proof

@ Assume X(D) = Amin(D)+1=A+1>3. dt(v) <A d-(v) <A
@ Remove all arcs from Y to X. P — jmmmmm e
@ Replace each arc from X to Y by a digon.
@ We have X(D') > (D) > A + 1.
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Proof

Assume (D) = Amin(D) +1=A+1> 3.

Remove all arcs from Y to X.

We have Y(D’) > ¥(D) > A + 1.

Let H C D’ be (A + 1)-dicritical. It must be
A-diregular since:

Do () = AXul = dy(x)

xEXH xEXy

°
°
@ Replace each arc from X to Y by a digon.
°
°
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Proof

Assume (D) = Amin(D) +1=A+1> 3.
Remove all arcs from Y to X.

Replace each arc from X to Y by a digon.
We have Y(D’) > ¥(D) > A + 1.

Let H C D’ be (A + 1)-dicritical. It must be
A-diregular since:

Do () = AXul = dy(x)

xEXH xEXy

X(H) = Amax(H) + 1, the result follows from
Directed Brooks' Theorem.
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Further research: sublinear bounds for oriented graphs

Conjecture (Erdés and Neumann-Lara 1979)

Let G be an oriented graph, then x( é) =0 (%).
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Further research: sublinear bounds for oriented graphs

Conjecture (Erdés and Neumann-Lara 1979)

Let G be an oriented graph, then x( 6) =0 (%).

A(D) = maxyev(py \/d (V) - d7(v) (by definition Amin(D) < A(D) < AmaX(D)).

Theorem (Harutyunyan and Mohar 2011)

There exists ¢ > 0 s.t. every oriented graph G with A(é ) large enough satisfies

X(G) < (1—¢)A(G).
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Further research: sublinear bounds for oriented graphs

Conjecture (Erdés and Neumann-Lara 1979)

Let G be an oriented graph, then x( é) =0 (%).

A(D) = maxyev(py \/d (V) - d7(v) (by definition Amin(D) < A(D) < AmaX(D)).

Theorem (Harutyunyan and Mohar 2011)

There exists ¢ > 0 s.t. every oriented graph G with A(é ) large enough satisfies

X(G) < (1—¢)A(G).

Particular case: Is it true that ¥(K,0K,) = O (L)'?
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Further research: an analogue of Reed's conjecture for digraphs

Conjecture (Reed 1998): Every graph G satisfies x(G) < [w—‘
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Further research: an analogue of Reed's conjecture for digraphs

Conjecture (Reed 1998): Every graph G satisfies x(G) < [A(G)J’H“’(G)—‘
Theorem (Reed 1998)

Je > 0 s.t. every graph G satisfies x(G) < [(1 —¢)(A(G) + 1) + ew(G)].
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Further research: an analogue of Reed's conjecture for digraphs

Conjecture (Reed 1998): Every graph G satisfies x(G) < [w—‘

Theorem (Reed 1998)
Je > 0 s.t. every graph G satisfies x(G) < [(1 —¢)(A(G) + 1) + ew(G)]. J

Conjecture (Kawarabayashi and P. 2024+): Every digraph D satisfies

. A(D) +1+ T (D)
X(D) < { 5 -‘
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Further research: an analogue of Reed's conjecture for digraphs
Conjecture (Reed 1998): Every graph G satisfies x(G) < [w—‘

Theorem (Reed 1998)
Je > 0 s.t. every graph G satisfies x(G) < [(1 —¢)(A(G) + 1) + ew(G)]. J

Conjecture (Kawarabayashi and P. 2024+): Every digraph D satisfies

. A(D) +1+ T (D)
X(D) < { 5 -‘

Theorem (Kawarabayashi and P. 2024+) }

Je > 0 s.t. every digraph D satisfies X(D) < [(1 —e)(A(D) +1) + 5W(D)W .
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Thank you!
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