Complexity of some arc-partition problems for digraphs J. Bang-Jensen, S. Bessy, D. Gonçalves, L. Picasarri-Arrieta

Arc(edge)-partitioning problems

Given two properties P_1 , P_2 , the (P_1, P_2) -arc-partitioning problem consists of deciding whether a digraph D = (V, A) has a partition of its arcs in two subsets A_1 and A_2 such that (V, A_i) has property P_i .

Figure: A digraph with a (strongly connected, having out-branching)-arc-partition

< 日 > < 同 > < 回 > < 耳

Arc-partitioning or edge-partitioning problems are related to fault tolerance.

Undirected case

Using Tutte-Nash-Williams theorem (1961), one can decide in polynomial time if G = (V, E) has k edge-disjoint spanning trees.

Directed case

It is NP-complete to decide if D = (V, A) has 2 arc-disjoint strongly connected spanning subdigraphs (Bang-Jensen & Yeo, 2004).

イロト イボト イヨト イヨ

Introduction

We fixed 15 properties we wanted to study :

- bipartite,
- connected,
- strongly connected,
- acyclic,
- acyclic spanning,
- having an out-branching,
- having an in-branching,
- $\delta^+ \geq k$,

- $\delta^- \geq k$,
- cycle factor,
- $\geq k$ arcs,
- $\leq k$ arcs,
- balanced,
- eulerian,
- being a cycle.

 \implies 120 arc-partitioning problems to study

э.

(日)

Introduction

	Bipartite	Connected	Strongly Connecte	d Acyclic	Acyclic span.	Out-Branchin	g In-Branching			$\delta^- \geq k$	$\delta^+ \geq$	k Cycle	Factor	$\leq k$ arcs	$\geq k$ arcs	Balanced	Eulerian	Cycle
Bipartite	NPC	Poly	Poly	NPC	NPC	Poly	Poly	1	Bipartite	Poly	Poly	NF	PC 24	NPC	Poly	NPC	NPC	NPC
Connected	×	Poly	NPC	Poly	NPC	NPC	NPC		Connected	Poly	Poly	NF	PC 24	Poly	Poly	Poly	NPC	NPC
Strongly Connected	×	×	NPC	Poly	NPC	NPC	NPC	Strong	y Connected	NPC	NPC	NF	PC 24	Poly	NPC	Poly	NPC	NPC
Acyclic	×	×	×	Poly	Poly	Poly	Poly		Acyclic	Poly	Poly	NF	PC 24	NPC	Poly	Poly	NPC	NPC
Acyclic span.	×	×	×	×	Poly	NPC	NPC	Acy	clic spanning	Poly	Poly	NF	ъс	NPC	Poly	NPC	NPC	NPC
Out-Branching	×	×	×	×	×	Poly	NPC	0	ut-Branching	Poly	NPC	NF	ъс	Poly	Poly	Poly	NPC	NPC
In-branching	×	×	×	×	×	×	Poly		In-branching	NPC	Poly	NF	ъс	Poly	Poly	Poly	NPC	NPC
			[$\delta^- \geq$	$k \delta^+ \ge k$	Cycle Factor	$\leq k$ arcs	$\geq k$ arcs	Balan	ced I	Eulerian	Cycle					
				$\delta^- \ge$	k Poly	Poly	Poly	Poly	Poly	Pol	у	NPC	Poly					
				$\delta^+ \ge$	$\geq k \times$	Poly	Poly	Poly	Poly	Pol	у	NPC	Poly					
				Cycle Fac	tor ×	×	Poly	Poly	Poly	Pol	у	NPC	NPC					
				$\leq k$ a	rcs ×	×	×	Poly	Poly	Pol	у	NPC	NPC					
				$\geq k$ a	rcs ×	×	×	×	Poly	Pol	у	NPC	Poly					
				Balanc	ced ×	×	×	×	×	Pol	у	Poly	Poly					
				Euler	ian ×	×	×	×	×	×		NPC	NPC					
			Γ	Cy	cle ×	×	×	×	×	×		×	NPC					

Classification of arc-partitioning problems for digraphs

э

イロト イロト イヨト イヨト

Some known results

• (connected, connected) : Polynomial (Tutte-Nash-Williams' theorem, 1961). G = (V, E) has t edge-disjoint spanning trees iff for every partition V_1, \dots, V_k of V, there are at least k(t-1) crossing edges.

One can compute them in polynomial time (Kaiser's algorithmic proof, 2012)

- (connected, connected) : Polynomial (Tutte-Nash-Williams' theorem, 1961).
- (having an out-branching, having an out-branching) : Polynomial (Edmonds' branching theorem, 1973).

D = (V, A) has k arc-disjoint out-branchings rooted in r if and only if, $\forall X \subseteq V \setminus \{r\}$, there are k arcs from $V \setminus X$ to X.

- (connected, connected) : Polynomial (Tutte-Nash-Williams' theorem, 1961).
- (out-branching, out-branching) : Polynomial (Edmonds' branching theorem, 1973).
- (out-branching, in-branching) : NP-complete (Thomassen, 1989).

Conjecture (Thomassen)

There is $k \in \mathbb{N}$ such that every k-arc-strong digraph has an (out-branching, in-branching)-arc-partition.

- solved for digraphs with a universal vertex (Bang-Jensen, Huang, 1995),
- solved for digraphs with independence number at most 2 (Bang-Jensen, Bessy, Havet, Yeo, 2020)

イロト イボト イヨト イヨト

- (connected, connected) : Polynomial (Tutte-Nash-Williams' theorem, 1961).
- (out-branching, out-branching) : Polynomial (Edmonds' branching theorem, 1973).
- (out-branching, in-branching) : NP-complete (Thomassen, 1989).
- (strongly connected, strongly connected) : NP-complete (Bang-Jensen, Yeo, 2004).

Conjecture (Bang-Jensen, Yeo)

There is $k \in \mathbb{N}$ such that every k-arc-strong digraph has an (strongly connected, strongly connected)-arc-partition.

solved for locally semi-complete digraphs (Bang-Jensen, Huang, 2012)

イロト 人間ト イヨト イヨト

- (connected, connected) : Polynomial (Tutte-Nash-Williams' theorem, 1961).
- (out-branching, out-branching) : Polynomial (Edmonds' branching theorem, 1973).
- (out-branching, in-branching) : NP-complete (Thomassen, 1989).
- (strongly connected, strongly connected) : NP-complete (Bang-Jensen, Yeo, 2004).
- (out-branching, connected) : NP-complete (Bang-Jensen, Yeo, 2012).
- (strongly connected, connected) : NP-complete (Bang-Jensen, Yeo, 2012).

イロト イヨト イヨト

An overview on arc-partitioning problems

- Trivial problems : The (P_1, P_2) -arc-partitioning problem is trivially polynomial when :
 - *P*₁ holds for the arcless digraph, bipartite, acyclic, ≤ k arcs, balanced
 - P₂ is upward closed,

connected, strongly connected, having an out(in)-branching, $\delta^+ \ge k, \delta^- \ge k$, $\ge k$ arcs

A digraph D has such a partition if and only if D has property P_2 . If this is the case then $(\emptyset, A(D))$ is a partition.

イロト イポト イヨト イヨト

- Trivial problems : polynomial, 28 problems.
- (≥ k arcs, P₂): it can be solved in polynomial time when computing the minimum size of a subgraph of D having property P₂ can be solved in polynomial time.
 ≥ k arcs, δ⁺ ≥ k, δ⁻ ≥ k, cycle, connected, having an out(in)-branching, acyclic spanning, cycle factor.

э.

- Trivial problems : polynomial, 28 problems.
- ($\geq k \text{ arcs, } P_2$): polynomial, 9 problems.
- Equivalent of being hamiltonian in 2-regular digraphs :
 - Since the hamiltonian cycle problem is known to be NP-complete on 2-regular digraphs (Bang-Jensen, Gutin, 2009), one can easily show that 16 arc-partitioning problems are NP-complete.
 - For example, a 2-regular digraph has a hamiltonian cycle if and only if it has a (connected, cycle factor)-arc partition.

・ロト ・四ト ・ヨト

- Trivial problems : polynomial, 28 problems.
- ($\geq k \text{ arcs, } P_2$) : polynomial, 9 problems.
- Equivalent of being hamiltonian in 2-regular digraphs : NP-complete, 16 problems.
- Equivalent of having two arc-disjoint hamiltonian cycles in 2-regular digraphs :
 - Since deciding if a 2-regular digraph has two arc-disjoint hamiltonian cycles is known to be NP-complete (Bang-Jensen & Yeo, 2012), one can easily show that 12 arc-partitioning problems are NP-complete.
 - For example, a 2-regular digraph has two arc-disjoint hamiltonian cycles if and only if it has a (eulerian, connected)-arc-partition.

イロト イボト イヨト イヨト

- Trivial problems : polynomial, 28 problems.
- ($\geq k \text{ arcs, } P_2$) : polynomial, 9 problems.
- Equivalent of being hamiltonian in 2-regular digraphs : NP-complete, 16 problems.
- Equivalent of having two arc-disjoint hamiltonian cycles in 2-regular digraphs : NP-complete, 12 problems.
- Already known problems : 13 problems.

A polynomial-time solvable arc-partitioning problem

Theorem

a connected digraph D has an (acyclic spanning, acyclic spanning)-arc-partition iff $\delta(D) \ge 2$ and D is not the orientation of an odd cycle.

Le D be a connected digraph, then :

- if δ(D) < 2 or if D is the orientation of an odd cycle, clearly D does not have such a partition,
- if *D* is the orientation of an even cycle, clearly *D* has such a partition.

We assume that $\delta(D) \ge 2$ and D is not the orientation of a cycle.

Image: A math a math

• First, note that *D* has an (acyclic, acyclic)-arc-partition.

 A_2

• Since $\delta(D) \ge 2$, it is easy to see that D has an (acyclic, acyclic spanning)-arc-partition.

• Let (A_1, A_2) be such a partition which minimize the number of vertices not covered by A_1 , and assume there is a vertex v not covered by A_1 .

イロト イポト イヨト イヨト

• each path from v must be alternating between A_1 and A_2 ,

1

イロト イボト イヨト イヨト

- each path from v must be alternating between A_1 and A_2 ,
- 2 the vertex v belongs to every cycle in D,

- E

- each path from v must be alternating between A_1 and A_2 ,
- 2 the vertex v belongs to every cycle in D,

 \bigcirc there are not two edge-disjoint cycles in D,

- each path from v must be alternating between A_1 and A_2 ,
- 2 the vertex v belongs to every cycle in D,
- \bigcirc there are not two edge-disjoint cycles in D,
- there are two different cycles in D,

- each path from v must be alternating between A_1 and A_2 ,
- 2 the vertex v belongs to every cycle in D,
- \odot there are not two edge-disjoint cycles in D,
- there are two different cycles in D,
- there is a vertex x, different from v, which has degree at least 3,

- each path from v must be alternating between A_1 and A_2 ,
- 2 the vertex v belongs to every cycle in D,
- there are not two edge-disjoint cycles in D,
- there are two different cycles in D,
- there is a vertex x, different from v, which has degree at least 3,
- considering three maximal path from x, one can find three vertex-disjoint path from x to v,

This is a contradiction because of rule 1. This shows that A_1 must cover every vertex, and (A_1, A_2) is an (acyclic spanning, acyclic spanning)-arc-partition of D.

The (strongly connected, $\delta^+ \geq$ 1)-arc-partitioning problem

A NP-complete arc-partitioning problem

 The (strongly connected, δ⁺ ≥ 1)-arc-partitioning problem is NP-complete on 2-regular digraphs, because it is exactly the hamiltonian cycle problem.

イロト イヨト イヨト

- The (strongly connected, $\delta^+ \ge 1$)-arc-partitioning problem is NP-complete on 2-regular digraphs, because it is exactly the hamiltonian cycle problem.
- For every natural number k ≥ 2, it is NP-complete to decide whether a digraph of minimum out and in-degree at least k has a (strongly connected, δ⁺ ≥ 1)-arc-partition.

- The (strongly connected, $\delta^+ \ge 1$)-arc-partitioning problem is NP-complete on 2-regular digraphs, because it is exactly the hamiltonian cycle problem.
- For every natural number k ≥ 2, it is NP-complete to decide whether a digraph of minimum out and in-degree at least k has a (strongly connected, δ⁺ ≥ 1)-arc-partition.
- The (strongly connected, δ⁺ ≥ 1)-arc-partitioning problem is NP-complete on 2-arc-strong 2-regular digraphs, because the hamiltonian cycle problem is NP-complete on this class of graphs :

- The (strongly connected, δ⁺ ≥ 1)-arc-partitioning problem is NP-complete on 2-regular digraphs, because it is exactly the hamiltonian cycle problem.
- For every natural number k ≥ 2, it is NP-complete to decide whether a digraph of minimum out and in-degree at least k has a (strongly connected, δ⁺ ≥ 1)-arc-partition.
- The (strongly connected, $\delta^+ \ge 1$)-arc-partitioning problem is NP-complete on 2-arc-strong 2-regular digraphs.
- Every 2-arc-strong digraph with minimum out-degree at least 4 has a (strongly connected, $\delta^+ \ge 1$)-arc-partition.

イロト イボト イヨト イヨト

Let D = (V, A) be a 2-arc-strong digraph with minimum out-degree at least 4. Let $X \subseteq V$ and (A_1, A_2) be a partition of A(D[X]). (X, A_1, A_2) is good iff $\exists x_0 \in X$ such that :

- $D_1 = (X, A_1)$ is strongly connected,
- $\forall x \in X, x \neq x_0$, either $d^+_{A_2}(x) \geq 1$ or $|N(x) \setminus X| \geq 2$,
- $d^+_{A_2}(x_0) \geq 1$ or $|\mathcal{N}(x_0) \setminus X| \geq 1$.

・ 何 ト ・ 三 ト ・ 三

D always has such a good tuple, let (X, A_1, A_2) be such a tuple which maximize the size of *X*, and assume that |X| < |V|. Let *u* be an out-neighbour of x_0 in *X*, P_1 a path from *X* to *u* in $D - \{x_0u\}$, and P_2 a path from *u* to *X*.

One can get a better tuple (X', A'_1, A'_2) where :

- $X' = X \cup V(P_1) \cup V(P_2)$
- $A'_1 = X \cup A(P_1) \cup A(P_2)$
- $A'_2 = A(D[X']) \setminus A'_1$

Then we know that X = V and (A_1, A_2) is a **(strong**, $\delta^+ \ge 1$)-arc-partition of D.

	In general	2-arc-strong
$\delta^+ \ge 2$	NP-c	NP-c
$\delta^+ \ge 3$	NP-c	?
$\delta^+ \ge 4$	NP-c	Always true

Problem

Does every 2-arc-strong digraph with minimum out-degree at least 3 have a (strongly connected, $\delta^+ \ge 1$)-arc-partition ?

イロト イポト イヨト イヨト

Open problems

Theorem

Every 2-arc-strong outerplanar multi-digraph have a (strong, strong)-arc-partition.

Problem

Does every 3-arc-strong planar digraph have a (out-branching,in-branching)-arc-partition ? a (strong,strong)-arc-partition ?

We know that every 2-arc-strong digraph with a universal vertex have an (out-branching, in-branching)-arc-partition.

Problem

Does every 3-arc-strong digraph with a universal vertex have a (strong, strong)-arc-partition ?

э

・ロト ・ 日 ト ・ 日 ト

Thanks for your attention.

590

3

・ロト ・四ト ・ヨト ・ヨト