Complexity of some arc-partition problems for digraphs
J. Bang-Jensen, S. Bessy, D. Gonçalves, L. Picasarri-Arrieta

Arc(edge)-partitioning problems

Given two properties P_{1}, P_{2}, the (P_{1}, P_{2})-arc-partitioning problem consists of deciding whether a digraph $D=(V, A)$ has a partition of its arcs in two subsets A_{1} and A_{2} such that (V, A_{i}) has property P_{i}.

Figure: A digraph with a (strongly connected, having out-branching)-arc-partition

Arc-partitioning or edge-partitioning problems are related to fault tolerance.

Undirected case

Using Tutte-Nash-Williams theorem (1961), one can decide in polynomial time if $G=(V, E)$ has k edge-disjoint spanning trees.

Directed case

It is NP-complete to decide if $D=(V, A)$ has 2 arc-disjoint strongly connected spanning subdigraphs (Bang-Jensen \& Yeo, 2004).

We fixed 15 properties we wanted to study :

- bipartite,
- $\delta^{-} \geq k$,
- connected,
- cycle factor,
- strongly connected,
- acyclic,
- $\geq k$ arcs,
- acyclic spanning,
- having an out-branching,
- having an in-branching,
- $\leq k$ arcs,
- balanced,
- eulerian,
- $\delta^{+} \geq k$,
- being a cycle.
$\Longrightarrow 120$ arc-partitioning problems to study

Classification of arc-partitioning problems for digraphs

Some known results

- (connected, connected) : Polynomial (Tutte-Nash-Williams' theorem, 1961). $G=(V, E)$ has t edge-disjoint spanning trees iff for every partition $V_{1}, \ldots V_{k}$ of V, there are at least $k(t-1)$ crossing edges.
One can compute them in polynomial time (Kaiser's algorithmic proof, 2012)

- (connected, connected) : Polynomial (Tutte-Nash-Williams' theorem, 1961).
- (having an out-branching, having an out-branching) : Polynomial (Edmonds' branching theorem, 1973).
$D=(V, A)$ has k arc-disjoint out-branchings rooted in r if and only if, $\forall X \subseteq V \backslash\{r\}$, there are k arcs from $V \backslash X$ to X.

- (connected, connected) : Polynomial (Tutte-Nash-Williams' theorem, 1961).
- (out-branching, out-branching) : Polynomial (Edmonds' branching theorem, 1973).
- (out-branching, in-branching) : NP-complete (Thomassen, 1989).

Conjecture (Thomassen)

There is $k \in \mathbb{N}$ such that every k-arc-strong digraph has an (out-branching, in-branching)-arc-partition.

- solved for digraphs with a universal vertex (Bang-Jensen, Huang, 1995),
- solved for digraphs with independence number at most 2 (Bang-Jensen, Bessy, Havet, Yeo, 2020)
- (connected, connected) : Polynomial (Tutte-Nash-Williams' theorem, 1961).
- (out-branching, out-branching) : Polynomial (Edmonds' branching theorem, 1973).
- (out-branching, in-branching) : NP-complete (Thomassen, 1989).
- (strongly connected, strongly connected) : NP-complete (Bang-Jensen, Yeo, 2004).

Conjecture (Bang-Jensen, Yeo)

There is $k \in \mathbb{N}$ such that every k-arc-strong digraph has an (strongly connected, strongly connected)-arc-partition.
solved for locally semi-complete digraphs (Bang-Jensen, Huang, 2012)

- (connected, connected) : Polynomial (Tutte-Nash-Williams' theorem, 1961).
- (out-branching, out-branching) : Polynomial (Edmonds' branching theorem, 1973).
- (out-branching, in-branching) : NP-complete (Thomassen, 1989).
- (strongly connected, strongly connected) : NP-complete (Bang-Jensen, Yeo, 2004).
- (out-branching, connected) : NP-complete (Bang-Jensen, Yeo, 2012).
- (strongly connected, connected) : NP-complete (Bang-Jensen, Yeo, 2012).

An overview on arc-partitioning problems

- Trivial problems: The (P_{1}, P_{2})-arc-partitioning problem is trivially polynomial when :
- P_{1} holds for the arcless digraph, bipartite, acyclic, $\leq k$ arcs, balanced
- P_{2} is upward closed,
connected, strongly connected, having an out(in)-branching, $\delta^{+} \geq k, \delta^{-} \geq k, \geq k$ arcs A digraph D has such a partition if and only if D has property P_{2}. If this is the case then $(\emptyset, A(D))$ is a partition.
- Trivial problems : polynomial, 28 problems.
- ($\geq k$ arcs, P_{2}) : it can be solved in polynomial time when computing the minimum size of a subgraph of D having property P_{2} can be solved in polynomial time.
$\geq k$ arcs, $\delta^{+} \geq k, \delta^{-} \geq k$, cycle, connected, having an out(in)-branching, acyclic spanning, cycle factor.
- Trivial problems : polynomial, 28 problems.
- ($\geq k$ arcs, P_{2}) : polynomial, 9 problems.
- Equivalent of being hamiltonian in 2-regular digraphs:
- Since the hamiltonian cycle problem is known to be NP-complete on 2-regular digraphs (Bang-Jensen, Gutin, 2009), one can easily show that 16 arc-partitioning problems are NP-complete.
- For example, a 2 -regular digraph has a hamiltonian cycle if and only if it has a (connected, cycle factor)-arc partition.
- Trivial problems : polynomial, 28 problems.
- ($\geq k$ arcs, P_{2}) : polynomial, 9 problems.
- Equivalent of being hamiltonian in 2-regular digraphs: NP-complete, 16 problems.
- Equivalent of having two arc-disjoint hamiltonian cycles in 2-regular digraphs :
- Since deciding if a 2-regular digraph has two arc-disjoint hamiltonian cycles is known to be NP-complete (Bang-Jensen \& Yeo, 2012), one can easily show that 12 arc-partitioning problems are NP-complete.
- For example, a 2-regular digraph has two arc-disjoint hamiltonian cycles if and only if it has a (eulerian, connected)-arc-partition.
- Trivial problems : polynomial, 28 problems.
- ($\geq k$ arcs, P_{2}) : polynomial, 9 problems.
- Equivalent of being hamiltonian in 2-regular digraphs: NP-complete, 16 problems.
- Equivalent of having two arc-disjoint hamiltonian cycles in 2-regular digraphs : NP-complete, 12 problems.
- Already known problems : 13 problems.

A polynomial-time solvable arc-partitioning problem

Theorem

a connected digraph D has an (acyclic spanning, acyclic spanning)-arc-partition iff $\delta(D) \geq 2$ and D is not the orientation of an odd cycle.

Le D be a connected digraph, then :

- if $\delta(D)<2$ or if D is the orientation of an odd cycle, clearly D does not have such a partition,
- if D is the orientation of an even cycle, clearly D has such a partition.
We assume that $\delta(D) \geq 2$ and D is not the orientation of a cycle.

- First, note that D has an (acyclic,acyclic)-arc-partition.

A_{2}
- Since $\delta(D) \geq 2$, it is easy to see that D has an (acyclic, acyclic spanning)-arc-partition.

- Let $\left(A_{1}, A_{2}\right)$ be such a partition which minimize the number of vertices not covered by A_{1}, and assume there is a vertex v not covered by A_{1}.

Forgetting the orientation in D,
(1) each path from v must be alternating between A_{1} and A_{2},

Forgetting the orientation in D,
(1) each path from v must be alternating between A_{1} and A_{2},
(2) the vertex v belongs to every cycle in D,

Forgetting the orientation in D,
(1) each path from v must be alternating between A_{1} and A_{2},
(2) the vertex v belongs to every cycle in D,
(3) there are not two edge-disjoint cycles in D,

Forgetting the orientation in D,
(1) each path from v must be alternating between A_{1} and A_{2},
(2) the vertex v belongs to every cycle in D,
(3) there are not two edge-disjoint cycles in D,
(9) there are two different cycles in D,

Forgetting the orientation in D,
(1) each path from v must be alternating between A_{1} and A_{2},
(2) the vertex v belongs to every cycle in D,
(3) there are not two edge-disjoint cycles in D,
(9) there are two different cycles in D,
(5) there is a vertex x, different from v, which has degree at least 3 ,

Forgetting the orientation in D,
(1) each path from v must be alternating between A_{1} and A_{2},
(2) the vertex v belongs to every cycle in D,
(3) there are not two edge-disjoint cycles in D,
(4) there are two different cycles in D,
(5) there is a vertex x, different from v, which has degree at least 3 ,
(0) considering three maximal path from x, one can find three vertex-disjoint path from x to v,

This is a contradiction because of rule 1 . This shows that A_{1} must cover every vertex, and (A_{1}, A_{2}) is an (acyclic spanning, acyclic spanning)-arc-partition of D.

A NP-complete arc-partitioning problem

- The (strongly connected, $\delta^{+} \geq 1$)-arc-partitioning problem is NP-complete on 2-regular digraphs, because it is exactly the hamiltonian cycle problem.
- The (strongly connected, $\delta^{+} \geq 1$)-arc-partitioning problem is NP-complete on 2-regular digraphs, because it is exactly the hamiltonian cycle problem.
- For every natural number $k \geq 2$, it is NP-complete to decide whether a digraph of minimum out and in-degree at least k has a (strongly connected, $\delta^{+} \geq 1$)-arc-partition.

- The (strongly connected, $\delta^{+} \geq 1$)-arc-partitioning problem is NP-complete on 2-regular digraphs, because it is exactly the hamiltonian cycle problem.
- For every natural number $k \geq 2$, it is NP-complete to decide whether a digraph of minimum out and in-degree at least k has a (strongly connected, $\delta^{+} \geq 1$)-arc-partition.
- The (strongly connected, $\delta^{+} \geq 1$)-arc-partitioning problem is NP-complete on 2-arc-strong 2-regular digraphs, because the hamiltonian cycle problem is NP-complete on this class of graphs :

- The (strongly connected, $\delta^{+} \geq 1$)-arc-partitioning problem is NP-complete on 2-regular digraphs, because it is exactly the hamiltonian cycle problem.
- For every natural number $k \geq 2$, it is NP-complete to decide whether a digraph of minimum out and in-degree at least k has a (strongly connected, $\delta^{+} \geq 1$)-arc-partition.
- The (strongly connected, $\delta^{+} \geq 1$)-arc-partitioning problem is NP-complete on 2-arc-strong 2-regular digraphs.
- Every 2-arc-strong digraph with minimum out-degree at least 4 has a (strongly connected, $\delta^{+} \geq 1$)-arc-partition.

Let $D=(V, A)$ be a 2-arc-strong digraph with minimum out-degree at least 4 . Let $X \subseteq V$ and $\left(A_{1}, A_{2}\right)$ be a partition of $A(D[X])$. $\left(X, A_{1}, A_{2}\right)$ is good iff $\exists x_{0} \in X$ such that :

- $D_{1}=\left(X, A_{1}\right)$ is strongly connected,
- $\forall x \in X, x \neq x_{0}$, either $d_{A_{2}}^{+}(x) \geq 1$ or $|N(x) \backslash X| \geq 2$,
- $d_{A_{2}}^{+}\left(x_{0}\right) \geq 1$ or $\left|N\left(x_{0}\right) \backslash X\right| \geq 1$.

D always has such a good tuple, let $\left(X, A_{1}, A_{2}\right)$ be such a tuple which maximize the size of X, and assume that $|X|<|V|$.
Let u be an out-neighbour of x_{0} in X, P_{1} a path from X to u in $D-\left\{x_{0} u\right\}$, and P_{2} a path from u to X.

One can get a better tuple $\left(X^{\prime}, A_{1}^{\prime}, A_{2}^{\prime}\right)$ where :

- $X^{\prime}=X \cup V\left(P_{1}\right) \cup V\left(P_{2}\right)$
- $A_{1}^{\prime}=X \cup A\left(P_{1}\right) \cup A\left(P_{2}\right)$
- $A_{2}^{\prime}=A\left(D\left[X^{\prime}\right]\right) \backslash A_{1}^{\prime}$

Then we know that $X=V$ and $\left(A_{1}, A_{2}\right)$ is a (strong, $\delta^{+} \geq 1$)-arc-partition of D.

	In general	2-arc-strong
$\delta^{+} \geq 2$	NP-c	NP-c
$\delta^{+} \geq 3$	NP-c	$?$
$\delta^{+} \geq 4$	NP-c	Always true

Problem

Does every 2-arc-strong digraph with minimum out-degree at least 3 have a (strongly connected, $\delta^{+} \geq 1$-arc-partition?

Open problems

Theorem

Every 2-arc-strong outerplanar multi-digraph have a (strong,strong)-arc-partition.

Problem

Does every 3-arc-strong planar digraph have a (out-branching,in-branching)-arc-partition ? a (strong,strong)-arc-partition ?

We know that every 2-arc-strong digraph with a universal vertex have an (out-branching, in-branching)-arc-partition.

Problem

Does every 3-arc-strong digraph with a universal vertex have a (strong,strong)-arc-partition ?

Thanks for your attention.

