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Networks

A Network is a quadruplet A" = (D, s, t, ¢) where:
e D= (V,A)is a digraph,
@ s ¢ Vis a source,
e t € Visasink, and
°

¢ : A — N is a capacity function.
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Flows in networks

In a network N/ = (D = (V, A),s, t,c), a flow is a function f : A — N such that:
e Vuv € A, f(uv) < c(uv), and

o Vv e V\ {s,t}, Z f(uv) = Z f(vw).
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Flows in networks

In a network N/ = (D = (V, A),s, t,c), a flow is a function f : A — N such that:
e Vuv € A, f(uv) < c(uv), and
o Vv e V\ {s,t}, Z f(uv) = Z f(vw).
ueN—(v) weN*(v)
The value |f| : amount of flow leaving s (= entering t).
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Flows in networks

In a network N/ = (D = (V, A),s, t,c), a flow is a function f : A — N such that:

e Yuv € A,

ueN—(v)

f(uv) < c(uv),

o Vv e V\ {s,t}, Z f(uv)

and

= Z f(vw).

weN+(v)

The value |f| : amount of flow leaving s (= entering t).

The support Ds :
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3/4
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subdigraph of D with the arcs uv s.t. 7(uv) > 1.
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MAX-FLOW MIN-CUT theorem

A maximum flow * is a flow with maximum value |f*|.
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MAX-FLOW MIN-CUT theorem

A maximum flow * is a flow with maximum value |f*|.
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MAX-FLOW MIN-CUT theorem

A maximum flow * is a flow with maximum value |f*|.

The value of a maximum flow is equal to the capacity of a minimum cut (Ford and

Fulkerson 1962), and it can be computed in polynomial time (Edmonds and
Karp 1972).
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Constrained Flows

Given a property P on flows, we can consider the following problem.

P-MAXIMUM-FLOW

Input : A network N = (D, s, t,c) and an integer £
Question :  Does there exist a flow f € P such that |[f| > ¢ 7
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Constrained Flows

Given a property P on flows, we can consider the following problem.

P-MAXIMUM-FLOW

Input : A network N = (D, s, t,c) and an integer £
Question :  Does there exist a flow f € P such that |[f| > ¢ 7

Our contributions:
o f € P iff D has bounded out-degree,
e f € P iff Dy is highly connected,

e f € P iff it is persistent (i.e. removing any arc from Ds does not decrease the flow
too much),

f € P iff it is decomposable into few path-flows, and

f € P iff each arc belongs to few path-flows.
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Constrained Flows

Given a property P on flows, we can consider the following problem.

P-MAXIMUM-FLOW

Input : A network N = (D, s, t,c) and an integer £
Question :  Does there exist a flow f € P such that |[f| > ¢ 7

Our contributions:
o f € P iff D has bounded out-degree,
e f € P iff Dr is highly connected,

e f € P iff it is persistent (i.e. removing any arc from Ds does not decrease the flow
too much),

f € P iff it is decomposable into few path-flows, and

f € P iff each arc belongs to few path-flows.
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An easy example: acyclic flows
f € P iff D is acyclic.
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An easy example: acyclic flows
f € P iff D is acyclic.

Theorem

Given a network N, for every flow f there exists a flow f' s.t. |f'| = |f| and Dy is
acyclic.
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An easy example: acyclic flows
f € P iff D is acyclic.

Theorem

Given a network N, for every flow f there exists a flow f' s.t. |f'| = |f| and Dy is
acyclic.

Proof: Every flow f decomposes into path-flows and cycle-flows. Remove the

cycle-flows to obtain f'.
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An easy example: acyclic flows
f € P iff D is acyclic.

Theorem

Given a network N, for every flow f there exists a flow f' s.t. |f'| = |f| and Dy is
acyclic.

Proof: Every flow f decomposes into path-flows and cycle-flows. Remove the
cycle-flows to obtain f'.
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An easy example: acyclic flows
f € P iff D is acyclic.

Theorem

Given a network N, for every flow f there exists a flow f' s.t. |f'| = |f| and Dy is
acyclic.

Proof: Every flow f decomposes into path-flows and cycle-flows. Remove the
cycle-flows to obtain f'.
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Degree constrained flows

(AT < k)-MAxiMUM-FLOW

Input : A network N = (D, s, t,c) and an integer £
Question :  Does there exist a flow 7 such that A™(D¢) < k and |f| > ¢ ?
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Degree constrained flows

(AT < k)-MAxiMUM-FLOW

Input : A network N = (D, s, t,c) and an integer £
Question :  Does there exist a flow 7 such that A™(D¢) < k and |f| > ¢ ?

Trivial when k = 1.
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Degree constrained flows

(AT < k)-MAxiMUM-FLOW

Input : A network N = (D, s, t,c) and an integer £
Question :  Does there exist a flow 7 such that A™(D¢) < k and |f| > ¢ ?

Trivial when k = 1.

Theorem

For every fixed k > 2, (A" < k)-MAXIMUM-FLOW is NP-complete even when
restricted to acyclic networks.
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NP-hardness of (A" < 2)-MaxiMuMm-FLow

Reduction from 3-SAT. F = (3 Vo V =) A (—xq Voo V oxs) A (5xg V —ix V —ix3)
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NP-hardness of (A" < 2)-MaAXiIMUM-FLOW

Reduction from 3-SAT. F = (3 Vo V =) A (—xq Voo V oxs) A (5xg V —ix V —ix3)
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NP-hardness of (A" < 2)-MaAXiIMUM-FLOW

Reduction from 3-SAT. F = (3 Vo V =) A (—xq Voo V oxs) A (5xg V —ix V —ix3)
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NP-hardness of (A" < 2)-MaxiMuMm-FLow
Reduction from 3-SAT. F
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NP-hardness of (A" < 2)-MaxiMuMm-FLow
Reduction from 3-SAT. F

(x1 Vo V=x3) A (=x1 Vxa Vxs) A(—xy V—oxg V —ixs)
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NP-hardness of (A" < 2)-MaxiMuMm-FLow

Reduction from 3-SAT. F = (3 Vo V =) A (—xq Voo V oxs) A (5xg V —ix V —ix3)
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NP-hardness of (A" < 2)-MaAXiIMUM-FLOW

Reduction from 3-SAT. F = (3 Vo V =) A (—xq Voo V oxs) A (5xg V —ix V —ix3)
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F is satisfiable iff there exists a flow f with AT (D) <2 and |f| > 3m + 1.
Question: What if we have bounded capacities?

Bang-Jensen J., Bessy S., and Picasarri-Arrieta L. Constrained Flows in Networks



(A" < k)-FLow OF VALUE k + 1 is solvable in polynomial time

@ Clean the network: for each arc uv, we set c(uv) < min(c(uv), maxflow(v, t)).
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(A" < k)-FLow OF VALUE k + 1 is solvable in polynomial time

@ Clean the network: for each arc uv, we set c(uv) + min(c(uv), maxflow(v, t)).

@ N is a positive instance iff every cut-vertex of the cleaned network has a leaving arc
with capacity 2.
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Flows decomposable into few path-flows

p-DECOMPOSABLE-MAXIMUM-FLOW

Input : A network A" = (D, s, t,c)
Output : The maximum value of a flow f s.t. f decomposes into at most p
path-flows.
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Flows decomposable into few path-flows

p-DECOMPOSABLE-MAXIMUM-FLOW

Input : A network A" = (D, s, t,c)
Output : The maximum value of a flow f s.t. f decomposes into at most p
path-flows.

Theorem (Baier, Kohler, and Skutella 2005)

2-DECOMPOSABLE-MAXIMUM-FLOW is NP-hard and cannot be approximated by any
ratio larger than 3.
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Flows decomposable into few path-flows

p-DECOMPOSABLE-MAXIMUM-FLOW

Input : A network A" = (D, s, t,c)
Output : The maximum value of a flow f s.t. f decomposes into at most p
path-flows.

Theorem (Baier, Kohler, and Skutella 2005)

2-DECOMPOSABLE-MAXIMUM-FLOW is NP-hard and cannot be approximated by any
ratio larger than 3.

Theorem (Baier, Kéhler, and Skutella 2005)

p-DECOMPOSABLE-MAXIMUM-FLOW can be approximated by a ratio p = % when
p € {2,3} and by a ratio p = % when p > 4.
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Flows decomposable into few path-flows : Hardness

Theorem

For every fixed p > 2, the p-DECOMPOSABLE-MAX-FLOW problem is NP-hard.
Moreover, unless P=NP, it cannot be approximated by any ratio larger than
p(p) = min(p1(p), p2(p)), where p1(p), p2(p) are defined as follows:

g ifp=0 mod 4
2=l ifp—1 mod 4

m(p) =1 853
& ifp=2 mod4
gz—:; ifp=3 mod 4
_ % if p is even
p2(p) = % otherwise.

In particular, p(2) = 3, p(3) = 2, p(p) —— 2, and p(p) < & in general.
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Flows decomposable into few disjoint path-flows.

p-VERTEX-DECOMPOSABLE-MAXIMUM-FLOW

Input : A network A" = (D, s, t,c)
Output : The maximum value of a flow f s.t. f decomposes into at most p
path-flows intersecting exactly on {s, t}.
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Flows decomposable into few disjoint path-flows.

p-VERTEX-DECOMPOSABLE-MAXIMUM-FLOW

Input : A network A" = (D, s, t,c)
Output : The maximum value of a flow f s.t. f decomposes into at most p
path-flows intersecting exactly on {s, t}.

Theorem

For every fixed p > 2, p-VERTEX-DECOMPOSABLE-MAXIMUM-FLOW is NP-hard and
cannot be approximated by any ratio larger than %
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Flows decomposable into few disjoint path-flows.

p-VERTEX-DECOMPOSABLE-MAXIMUM-FLOW

Input : A network A" = (D, s, t,c)
Output : The maximum value of a flow f s.t. f decomposes into at most p
path-flows intersecting exactly on {s, t}.

Theorem

For every fixed p > 2, p-VERTEX-DECOMPOSABLE-MAXIMUM-FLOW is NP-hard and
cannot be approximated by any ratio larger than %

Theorem

For every fixed p > 2, p-VERTEX-DECOMPOSABLE-MAXIMUM-FLOW can be

approximated by a ratio p = ﬁ where H(p) = Y%, 1 ~, In(p).
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—H(lp)—approximation for p-VERTEX-DECOMPOSABLE-MAXIMUM-FLOW

Algorithm:

@ for every i € {1,...,p}, find the largest capacity ¢; s.t. D\ {uv € A| c(uv) < ¢}
contains 7 disjoint (s, t)-paths.
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—H(lp)—approximation for p-VERTEX-DECOMPOSABLE-MAXIMUM-FLOW

Algorithm:
@ for every i € {1,...,p}, find the largest capacity ¢; s.t. D\ {uv € A| c(uv) < ¢}
contains 7 disjoint (s, t)-paths.
@ return max{i-¢; | i € {1,...,p}}.
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—H(lp)—approximation for p-VERTEX-DECOMPOSABLE-MAXIMUM-FLOW

Algorithm:
@ for every i € {1,...,p}, find the largest capacity ¢; s.t. D\ {uv € A| c(uv) < ¢}
contains 7 disjoint (s, t)-paths.
@ return max{i-¢; | i € {1,...,p}}.
Proof:

@ Let f* be an optimal solution with path-flows Py, ..., P} of values respectively
¢ >+ 2> ¢, and f be the flow computed by the algorithm above.
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—H(lp)—approximation for p-VERTEX-DECOMPOSABLE-MAXIMUM-FLOW

Algorithm:
@ for every i € {1,...,p}, find the largest capacity ¢; s.t. D\ {uv € A| c(uv) < ¢}
contains 7 disjoint (s, t)-paths.
@ return max{i-¢; | i € {1,...,p}}.
Proof:

@ Let f* be an optimal solution with path-flows Py, ..., P} of values respectively
¢ >+ 2> ¢, and f be the flow computed by the algorithm above.

@ Foreveryie {l,...,p}, |f|>i-¢>i-cf.
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—H(lp)—approximation for p-VERTEX-DECOMPOSABLE-MAXIMUM-FLOW

Algorithm:
@ for every i € {1,...,p}, find the largest capacity ¢; s.t. D\ {uv € A| c(uv) < ¢}
contains 7 disjoint (s, t)-paths.
@ return max{i-¢; | i € {1,...,p}}.
Proof:

@ Let f* be an optimal solution with path-flows Py, ..., P} of values respectively
¢f > -+ >c, and f be the flow computed by the algorithm above.

@ Foreveryie {l,...,p}, |f|>i-¢>i-cf.
@ Summing the inequalities above for every i we obtain:

P 1 p
1YY =i
i=1 i=1
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p- VERTEX-DECOMPOSABLE-MAXIMUM-FLOW on acyclic networks

Theorem

When p is part of the input, p-VERTEX-DECOMPOSABLE-MAXIMUM-FLOW on acyclic
networks is NP-hard, even when the capacities are in {1,2}.
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p- VERTEX-DECOMPOSABLE-MAXIMUM-FLOW on acyclic networks

Theorem

When p is part of the input, p-VERTEX-DECOMPOSABLE-MAXIMUM-FLOW on acyclic
networks is NP-hard, even when the capacities are in {1,2}.

v

Theorem

p-VERTEX-DECOMPOSABLE-MAXIMUM-FLOW on acyclic networks is solvable in time
O (n"®)) for some computable function f.
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p- VERTEX-DECOMPOSABLE-MAXIMUM-FLOW on acyclic networks

Theorem

When p is part of the input, p-VERTEX-DECOMPOSABLE-MAXIMUM-FLOW on acyclic
networks is NP-hard, even when the capacities are in {1,2}.

v

Theorem

p-VERTEX-DECOMPOSABLE-MAXIMUM-FLOW on acyclic networks is solvable in time
O (n"®)) for some computable function f.

Theorem

When parameterized by p, p-VERTEX-DECOMPOSABLE-MAXIMUM-FLOW on acyclic
networks is W/[1]-hard.
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Notion of W-tricots
W C V(D) \ {s, t} : an ordered set of p vertices (v1,..., V).
o A W-tricot T is a sequence of paths (Q1,..., Qp) pairwise intersecting exactly on

{s} s.t. end(@;) = v;.
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Notion of W-tricots
W C V(D) \ {s, t} : an ordered set of p vertices (v1,..., V).
o A W-tricot T is a sequence of paths (Q1,..., Qp) pairwise intersecting exactly on

{s} s.t. end(@;) = v;.

@ The value tv(T) of T is (c1,...,cp) where ¢; is the minimum capacity along Q;.

value(T) = (2,1,4)
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Notion of W-tricots
W C V(D) \ {s, t} : an ordered set of p vertices (v1,..., V).

o A W-tricot T is a sequence of paths (Q1,..., Qp) pairwise intersecting exactly on
{s} s.t. end(@;) = v;.
@ The value tv(T) of T is (c1,...,cp) where ¢; is the minimum capacity along Q;.

@ The total value of T is Y7, ¢;.

value(T) = (2,1,4)
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Notion of W-tricots
W C V(D) \ {s, t} : an ordered set of p vertices (v1,..., V).

o A W-tricot T is a sequence of paths (Q1,..., Qp) pairwise intersecting exactly on
{s} s.t. end(@;) = v;.

@ The value tv(T) of T is (c1,...,cp) where ¢; is the minimum capacity along Q;.

@ The total value of T is Y7, ¢;.

@ We have value(T) < value(T") iff Vi € {1,...,p}, ¢ <.

value(T) = (2,1,4)

value(T') = (2,2,4)

value(T) < value(T")
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Properties of the W-tricots

@ After subdividing every arc vt, the optimal solution of
p-VERTEX-DECOMPOSABLE-MAXIMUM-FLOW is exactly:

tv(T) | T is a W-tricot}.
WQNJPS,XH/V\SpmaX{ v(T)| Tisa ricot}. (%)
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Properties of the W-tricots

@ After subdividing every arc vt, the optimal solution of
p-VERTEX-DECOMPOSABLE-MAXIMUM-FLOW is exactly:

tv(T) | T is a W-tricot}.
WQNJPS,X|W\§pmaX{ v(T)| Tisa ricot}. (%)

@ The size of {value(T) | T is a W-tricot} is bounded by O(mP).

7
o— 0
X
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Properties of the W-tricots

@ After subdividing every arc vt, the optimal solution of
p-VERTEX-DECOMPOSABLE-MAXIMUM-FLOW is exactly:

tv(T) | T is a W-tricot}.
WQNJPS,XH/V\SpmaX{ v(T)| Tisa ricot}. (%)

@ The size of {value(T) | T is a W-tricot} is bounded by O(mP).
e Goal: compute {value(T) | T is a W-tricot} for every W, and return (%).

o<
N
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Polynomial-Time Algorithm for exactly p path-flows:
L : list indexed by the p-tuples of V(D) \ {s}. Each cell L[W] is a set of W-tricots.

Q@ VW C N7(s), L[W] « {the only W-tricot}.
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Polynomial-Time Algorithm for exactly p path-flows:

L : list indexed by the p-tuples of V(D) \ {s}. Each cell L[W] is a set of W-tricots.
Q@ VW C N7(s), L[W] « {the only W-tricot}.
@ Fix an acyclic ordering vi, ..., v, with initial vertices N*[s], and the corresponding

lexicographic ordering of the p-tuples W, ..., W, where r = (;) - pl.
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Polynomial-Time Algorithm for exactly p path-flows:
L : list indexed by the p-tuples of V(D) \ {s}. Each cell L[W] is a set of W-tricots.
Q@ VW C N*(s), L[W] «+ {the only W-tricot}.
@ Fix an acyclic ordering vi, ..., v, with initial vertices N™[s], and the corresponding
lexicographic ordering of the p-tuples Wi, ..., W, where r = ( ) - pl.

p
@ VYW, in this order, VT = (Q1, ..., Q) € L[W]], consider every extension

T =(Qu,...,Q U{y},...,Qp) of T s.t. Vk, end(Qx) < y.
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Polynomial-Time Algorithm for exactly p path-flows:
L : list indexed by the p-tuples of V(D) \ {s}. Each cell L[W] is a set of W-tricots.
Q@ VW C N*(s), L[W] «+ {the only W-tricot}.
@ Fix an acyclic ordering vi, ..., v, with initial vertices N™[s], and the corresponding
lexicographic ordering of the p-tuples Wi, ..., W, where r = (Z) - pl.
@ VYW, in this order, VT = (Q1, ..., Q) € L[W]], consider every extension
T =(Qu,...,Q U{y},...,Qp) of T s.t. Vk, end(Qx) < y.

Q@ If for all W-tricot T € L[W'], value(T’) £ value(T), then L[W'] « L[W']U{T'}.
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Validity of the algorithm

Invariant: when W; is considered, Y Wi-tricot T, L[W;] contains a tricot T' s.t.
value(T) < value(T").
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Validity of the algorithm

Invariant: when W; is considered, Y Wi-tricot T, L[W;] contains a tricot T' s.t.
value(T) < value(T").
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Question: What is the best approximation guarantee one can obtain for the
p-DECOMPOSABLE-MAXIMUM-FLOW problem when p > 27

2 3
— < < —
3,08 =

Bang-Jensen J., Bessy S., and Picasarri-Arrieta L. Constrained Flows in Networks



Open questions

Question: Is there a way to approximate the (AT < k)-MAXIMUM-FLOW problem?

Question: What is the best approximation guarantee one can obtain for the
p-DECOMPOSABLE-MAXIMUM-FLOW problem when p > 27

2 3
— < < —
3,08 =

Thank you!
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