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Networks

A Network is a quadruplet N = (D, s, t, c) where:
D = (V ,A) is a digraph,
s ∈ V is a source,
t ∈ V is a sink, and
c : A→ N is a capacity function.
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Flows in networks
In a network N = (D = (V ,A), s, t, c), a flow is a function f : A→ N such that:

∀uv ∈ A, f (uv) ≤ c(uv), and
∀v ∈ V \ {s, t},

∑
u∈N−(v)

f (uv) =
∑

w∈N+(v)

f (vw).

The value |f | : amount of flow leaving s (= entering t).
The support Df : subdigraph of D with the arcs uv s.t. f (uv) ≥ 1.
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Max-flow Min-cut theorem

A maximum flow f ∗ is a flow with maximum value |f ∗|.

The value of a maximum flow is equal to the capacity of a minimum cut (Ford and
Fulkerson 1962), and it can be computed in polynomial time (Edmonds and
Karp 1972).
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Constrained Flows

Given a property P on flows, we can consider the following problem.

P-Maximum-Flow
Input : A network N = (D, s, t, c) and an integer `
Question : Does there exist a flow f ∈ P such that |f | ≥ ` ?

Our contributions:
f ∈ P iff Df has bounded out-degree,
f ∈ P iff Df is highly connected,
f ∈ P iff it is persistent (i.e. removing any arc from Df does not decrease the flow
too much),
f ∈ P iff it is decomposable into few path-flows, and
f ∈ P iff each arc belongs to few path-flows.
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An easy example: acyclic flows
f ∈ P iff Df is acyclic.

Theorem
Given a network N , for every flow f there exists a flow f ′ s.t. |f ′| = |f | and Df ′ is
acyclic.

Proof: Every flow f decomposes into path-flows and cycle-flows. Remove the
cycle-flows to obtain f ′.
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Degree constrained flows

(∆+ ≤ k)-Maximum-Flow
Input : A network N = (D, s, t, c) and an integer `
Question : Does there exist a flow f such that ∆+(Df ) ≤ k and |f | ≥ ` ?

Trivial when k = 1.

Theorem
For every fixed k ≥ 2, (∆+ ≤ k)-Maximum-Flow is NP-complete even when
restricted to acyclic networks.
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NP-hardness of (∆+ ≤ 2)-Maximum-Flow

Reduction from 3-SAT. F = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3)

x1 x2 x3
u

m

m

m

m

m

m

m

m

m

m

v

m

m

m

m

m

s 3m + 1 2m + 1 2m + 1 2m + 1

2m + 1t

1 1 1

F is satisfiable iff there exists a flow f with ∆+(Df ) ≤ 2 and |f | ≥ 3m + 1.
Question: What if we have bounded capacities?
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(∆+ ≤ k)-Flow of Value k + 1 is solvable in polynomial time

1 Clean the network: for each arc uv , we set c(uv)← min(c(uv),maxflow(v , t)).

2 N is a positive instance iff every cut-vertex of the cleaned network has a leaving arc
with capacity 2.
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Flows decomposable into few path-flows

p-Decomposable-Maximum-Flow
Input : A network N = (D, s, t, c)
Output : The maximum value of a flow f s.t. f decomposes into at most p

path-flows.

Theorem (Baier, Köhler, and Skutella 2005)
2-Decomposable-Maximum-Flow is NP-hard and cannot be approximated by any
ratio larger than 2

3 .

Theorem (Baier, Köhler, and Skutella 2005)
p-Decomposable-Maximum-Flow can be approximated by a ratio ρ = 2

3 when
p ∈ {2, 3} and by a ratio ρ = 1

2 when p ≥ 4.
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Flows decomposable into few path-flows : Hardness

Theorem
For every fixed p ≥ 2, the p-Decomposable-Max-Flow problem is NP-hard.
Moreover, unless P=NP, it cannot be approximated by any ratio larger than
ρ(p) = min(ρ1(p), ρ2(p)), where ρ1(p), ρ2(p) are defined as follows:

ρ1(p) =


5
6 if p = 0 mod 4
5p−1
6p−2 if p = 1 mod 4
5p−2

6p if p = 2 mod 4
5p−3
6p−2 if p = 3 mod 4

ρ2(p) =
{ 4

5 if p is even
4p−2
5p−3 otherwise.

In particular, ρ(2) = 2
3 , ρ(3) = 3

4 , ρ(p) −−−−−→
p→+∞

4
5 , and ρ(p) ≤ 9

11 in general.
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Flows decomposable into few disjoint path-flows.

p-Vertex-Decomposable-Maximum-Flow
Input : A network N = (D, s, t, c)
Output : The maximum value of a flow f s.t. f decomposes into at most p

path-flows intersecting exactly on {s, t}.

Theorem
For every fixed p ≥ 2, p-Vertex-Decomposable-Maximum-Flow is NP-hard and
cannot be approximated by any ratio larger than 2

3 .

Theorem
For every fixed p ≥ 2, p-Vertex-Decomposable-Maximum-Flow can be
approximated by a ratio ρ = 1

H(p) where H(p) =
∑p

i=1
1
i ∼p ln(p).
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1
H(p)-approximation for p-Vertex-Decomposable-Maximum-Flow

Algorithm:
1 for every i ∈ {1, . . . , p}, find the largest capacity ci s.t. D \ {uv ∈ A | c(uv) < ci}

contains i disjoint (s, t)-paths.
2 return max{i · ci | i ∈ {1, . . . , p}}.

Proof:
Let f ∗ be an optimal solution with path-flows P∗1 , . . . ,P∗p of values respectively
c∗1 ≥ · · · ≥ c∗p and f be the flow computed by the algorithm above.
For every i ∈ {1, . . . , p}, |f | ≥ i · ci ≥ i · c∗i .
Summing the inequalities above for every i we obtain:

|f | ·
p∑

i=1

1
i ≥

p∑
i=1

c∗i = |f ∗|.
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p-Vertex-Decomposable-Maximum-Flow on acyclic networks

Theorem
When p is part of the input, p-Vertex-Decomposable-Maximum-Flow on acyclic
networks is NP-hard, even when the capacities are in {1, 2}.

Theorem
p-Vertex-Decomposable-Maximum-Flow on acyclic networks is solvable in time
O
(
nf (p)) for some computable function f .

Theorem
When parameterized by p, p-Vertex-Decomposable-Maximum-Flow on acyclic
networks is W [1]-hard.
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Notion of W -tricots
W ⊆ V (D) \ {s, t} : an ordered set of p vertices (v1, . . . , vp).

A W -tricot T is a sequence of paths (Q1, . . . ,Qp) pairwise intersecting exactly on
{s} s.t. end(Qi ) = vi .

The value tv(T ) of T is (c1, . . . , cp) where ci is the minimum capacity along Qi .
The total value of T is

∑p
i=1 ci .

We have value(T ) � value(T ′) iff ∀i ∈ {1, . . . , p}, ci ≤ c ′i .
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value(T ) = (2, 1, 4)

tv(T ) = 7
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Properties of the W -tricots
After subdividing every arc vt, the optimal solution of
p-Vertex-Decomposable-Maximum-Flow is exactly:

max
W⊆N−(t), |W |≤p

max{tv(T ) | T is a W -tricot}. (?)

The size of {value(T ) | T is a W -tricot} is bounded by O(mp).
Goal: compute {value(T ) | T is a W -tricot} for every W , and return (?).
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Polynomial-Time Algorithm for exactly p path-flows:
L : list indexed by the p-tuples of V (D) \ {s}. Each cell L[W ] is a set of W -tricots.

1 ∀W ⊆ N+(s), L[W ]← {the only W -tricot}.

2 Fix an acyclic ordering v1, . . . , vn with initial vertices N+[s], and the corresponding
lexicographic ordering of the p-tuples W1, . . . ,Wr where r =

(n
p
)
· p!.

3 ∀Wi in this order, ∀T = (Q1, . . . ,Qp) ∈ L[Wi ], consider every extension
T ′ = (Q1, . . . ,Qj ∪ {y}, . . . ,Qp) of T s.t. ∀k, end(Qk) ≺ y .

4 If for all W ′-tricot T̃ ∈ L[W ′], value(T ′) � value(T̃ ), then L[W ′]← L[W ′]∪{T ′}.

s t
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Validity of the algorithm

Invariant: when Wi is considered, ∀Wi -tricot T , L[Wi ] contains a tricot T ′ s.t.
value(T ) � value(T ′).

s t
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Open questions

Question: Is there a way to approximate the (∆+ ≤ k)-Maximum-Flow problem?

Question: What is the best approximation guarantee one can obtain for the
p-Decomposable-Maximum-Flow problem when p > 2?

2
3 ≤ ρ(3) ≤ 3

4

Thank you!
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