Constrained Flows in Networks

Jørgen Bang-Jensen¹, Stéphane Bessy², Lucas Picasarri-Arrieta³

¹ University of southern Denmark, Denmark
 ² Université de Montpellier, LIRMM, France
 ³ Université Côte d'Azur, France

3

200

Networks

A **Network** is a quadruplet $\mathcal{N} = (D, s, t, c)$ where:

- D = (V, A) is a digraph,
- $s \in V$ is a source,
- $t \in V$ is a sink, and
- $c : A \to \mathbb{N}$ is a capacity function.

Flows in networks

In a network $\mathcal{N} = (D = (V, A), s, t, c)$, a flow is a function $f : A \to \mathbb{N}$ such that:

• $\forall uv \in A$, $f(uv) \leq c(uv)$, and

•
$$\forall v \in V \setminus \{s, t\}, \sum_{u \in N^-(v)} f(uv) = \sum_{w \in N^+(v)} f(vw).$$

Flows in networks

In a network $\mathcal{N} = (D = (V, A), s, t, c)$, a flow is a function $f : A \to \mathbb{N}$ such that:

• $\forall uv \in A$, $f(uv) \leq c(uv)$, and

•
$$\forall v \in V \setminus \{s, t\}, \sum_{u \in N^-(v)} f(uv) = \sum_{w \in N^+(v)} f(vw).$$

The value |f|: amount of flow leaving s (= entering t).

Flows in networks

In a network $\mathcal{N} = (D = (V, A), s, t, c)$, a flow is a function $f : A \to \mathbb{N}$ such that:

• $\forall uv \in A$, $f(uv) \leq c(uv)$, and

•
$$\forall v \in V \setminus \{s, t\}, \sum_{u \in N^-(v)} f(uv) = \sum_{w \in N^+(v)} f(vw).$$

The value |f|: amount of flow leaving s (= entering t). The support D_f : subdigraph of D with the arcs uv s.t. $f(uv) \ge 1$.

$Max\mbox{-}{\mbox{Flow}}\ M\mbox{in-cut}$ theorem

A maximum flow f^* is a flow with maximum value $|f^*|$.

$Max\mbox{-}{\mbox{Flow}}\ M\mbox{in-cut}$ theorem

A maximum flow f^* is a flow with maximum value $|f^*|$.

$Max\mbox{-}{\mbox{Flow}}\ M\mbox{in-cut}$ theorem

A maximum flow f^* is a flow with maximum value $|f^*|$.

The value of a maximum flow is equal to the capacity of a minimum cut (Ford and Fulkerson 1962), and it can be computed in polynomial time (Edmonds and Karp 1972).

Constrained Flows

Given a property ${\mathcal P}$ on flows, we can consider the following problem.

$\mathcal{P} ext{-}\mathrm{Maximum-Flow}$

Input	:	A network $\mathcal{N} = (D, s, t, c)$ and an integer ℓ
Question	:	Does there exist a flow $f \in \mathcal{P}$ such that $ f \ge \ell$?

Our contributions:

- $f \in \mathcal{P}$ iff D_f has bounded out-degree,
- $f \in \mathcal{P}$ iff D_f is highly connected,
- $f \in \mathcal{P}$ iff it is persistent (*i.e.* removing any arc from D_f does not decrease the flow too much),
- $f \in \mathcal{P}$ iff it is decomposable into few path-flows, and
- $f \in \mathcal{P}$ iff each arc belongs to few path-flows.

Constrained Flows

Given a property ${\mathcal P}$ on flows, we can consider the following problem.

$\mathcal{P} ext{-}Maximum ext{-}Flow$

Input	:	A network $\mathcal{N} = (D, s, t, c)$ and an integer ℓ
Question	:	Does there exist a flow $f \in \mathcal{P}$ such that $ f \ge \ell$?

Our contributions:

- $f \in \mathcal{P}$ iff D_f has bounded out-degree,
- $f \in \mathcal{P}$ iff D_f is highly connected,
- $f \in \mathcal{P}$ iff it is persistent (*i.e.* removing any arc from D_f does not decrease the flow too much),
- $f \in \mathcal{P}$ iff it is decomposable into few path-flows, and
- $f \in \mathcal{P}$ iff each arc belongs to few path-flows.

Constrained Flows

Given a property ${\mathcal P}$ on flows, we can consider the following problem.

$\mathcal{P} ext{-}Maximum ext{-}Flow$

Input	:	A network $\mathcal{N} = (D, s, t, c)$ and an integer ℓ
Question	:	Does there exist a flow $f \in \mathcal{P}$ such that $ f \ge \ell$?

Our contributions:

- $f \in \mathcal{P}$ iff D_f has bounded out-degree,
- $f \in \mathcal{P}$ iff D_f is highly connected,
- $f \in \mathcal{P}$ iff it is persistent (*i.e.* removing any arc from D_f does not decrease the flow too much),
- $f \in \mathcal{P}$ iff it is decomposable into few path-flows, and
- $f \in \mathcal{P}$ iff each arc belongs to few path-flows.

An easy example: acyclic flows $f \in \mathcal{P}$ iff D_f is acyclic.

Theorem

Given a network N, for every flow f there exists a flow f' s.t. |f'| = |f| and $D_{f'}$ is acyclic.

Proof: Every flow f decomposes into **path-flows** and **cycle-flows**. Remove the cycle-flows to obtain f'.

 $f \in \mathcal{P}$ iff D_f is acyclic.

Theorem

Given a network N, for every flow f there exists a flow f' s.t. |f'| = |f| and $D_{f'}$ is acyclic.

Proof: Every flow f decomposes into **path-flows** and **cycle-flows**. Remove the cycle-flows to obtain f'.

3

 $f \in \mathcal{P}$ iff D_f is acyclic.

Theorem

Given a network N, for every flow f there exists a flow f' s.t. |f'| = |f| and $D_{f'}$ is acyclic.

Proof: Every flow f decomposes into **path-flows** and **cycle-flows**. Remove the cycle-flows to obtain f'.

(日)

 $f \in \mathcal{P}$ iff D_f is acyclic.

Theorem

Given a network N, for every flow f there exists a flow f' s.t. |f'| = |f| and $D_{f'}$ is acyclic.

Proof: Every flow f decomposes into **path-flows** and **cycle-flows**. Remove the cycle-flows to obtain f'.

 $f \in \mathcal{P}$ iff D_f is acyclic.

Theorem

Given a network N, for every flow f there exists a flow f' s.t. |f'| = |f| and $D_{f'}$ is acyclic.

Proof: Every flow f decomposes into **path-flows** and **cycle-flows**. Remove the cycle-flows to obtain f'.

Degree constrained flows

$(\Delta^+ \leq k)$ -MAXIMUM-FLOW

Input :	A network $\mathcal{N} = (D, s, t, c)$ and an integer ℓ
Question :	Does there exist a flow f such that $\Delta^+(D_f) \leq k$ and $ f \geq \ell$?

Trivial when k = 1.

Theorem

For every fixed $k \ge 2$, $(\Delta^+ \le k)$ -MAXIMUM-FLOW is NP-complete even when restricted to acyclic networks.

イロト イポト イヨト イヨト

Degree constrained flows

$(\Delta^+ \leq k)$ -MAXIMUM-FLOW

Input : A network $\mathcal{N} = (D, s, t, c)$ and an integer ℓ **Question** : Does there exist a flow f such that $\Delta^+(D_f) \le k$ and $|f| \ge \ell$?

Trivial when k = 1.

Theorem

For every fixed $k \ge 2$, $(\Delta^+ \le k)$ -MAXIMUM-FLOW is NP-complete even when restricted to acyclic networks.

(4回) (三) (三)

Degree constrained flows

$(\Delta^+ \leq k)$ -MAXIMUM-FLOW

Input :	A network $\mathcal{N} = (D, s, t, c)$ and an integer ℓ
Question :	Does there exist a flow f such that $\Delta^+(D_f) \leq k$ and $ f \geq \ell$?

Trivial when k = 1.

Theorem

For every fixed $k \ge 2$, $(\Delta^+ \le k)$ -MAXIMUM-FLOW is NP-complete even when restricted to acyclic networks.

Image: A matrix

Reduction from 3-SAT. $\mathcal{F} = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3)$

 \mathcal{F} is satisfiable iff there exists a flow f with $\Delta^+(D_f) \leq 2$ and $|f| \geq 3m + 1$.

Reduction from 3-SAT. $\mathcal{F} = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3)$

 \mathcal{F} is satisfiable iff there exists a flow f with $\Delta^+(D_f) \leq 2$ and $|f| \geq 3m + 1$. Question: What if we have bounded capacities?

$(\Delta^+ \leq k) ext{-} ext{FLOW OF VALUE } k+1$ is solvable in polynomial time

- **O** Clean the network: for each arc uv, we set $c(uv) \leftarrow \min(c(uv), maxflow(v, t))$.
- O $\mathcal N$ is a positive instance iff every cut-vertex of the cleaned network has a leaving arc with capacity 2.

Image: A math a math

$(\Delta^+ \leq k) ext{-FLOW OF VALUE } k+1$ is solvable in polynomial time

- **O** Clean the network: for each arc uv, we set $c(uv) \leftarrow \min(c(uv), maxflow(v, t))$.
- N is a positive instance iff every cut-vertex of the cleaned network has a leaving arc with capacity 2.

Flows decomposable into few path-flows

p-Decomposable-Maximum-Flow

- **Input** : A network $\mathcal{N} = (D, s, t, c)$
- **Output** : The maximum value of a flow f s.t. f decomposes into at most p path-flows.

Theorem (Baier, Köhler, and Skutella 2005)

2-DECOMPOSABLE-MAXIMUM-FLOW is NP-hard and cannot be approximated by any ratio larger than $\frac{2}{3}$.

Theorem (Baier, Köhler, and Skutella 2005)

p-DECOMPOSABLE-MAXIMUM-FLOW can be approximated by a ratio $\rho = \frac{2}{3}$ when $p \in \{2,3\}$ and by a ratio $\rho = \frac{1}{2}$ when $p \ge 4$.

Flows decomposable into few path-flows

p-Decomposable-Maximum-Flow

- **Input** : A network $\mathcal{N} = (D, s, t, c)$
- **Output** : The maximum value of a flow f s.t. f decomposes into at most p path-flows.

Theorem (Baier, Köhler, and Skutella 2005)

2-DECOMPOSABLE-MAXIMUM-FLOW is NP-hard and cannot be approximated by any ratio larger than $\frac{2}{3}$.

Theorem (Baier, Köhler, and Skutella 2005)

p-DECOMPOSABLE-MAXIMUM-FLOW can be approximated by a ratio $ho = \frac{2}{3}$ when $ho \in \{2,3\}$ and by a ratio $ho = \frac{1}{2}$ when $ho \geq 4$.

Flows decomposable into few path-flows

p-Decomposable-Maximum-Flow

Input : A network $\mathcal{N} = (D, s, t, c)$

Output : The maximum value of a flow f s.t. f decomposes into at most p path-flows.

Theorem (Baier, Köhler, and Skutella 2005)

2-DECOMPOSABLE-MAXIMUM-FLOW is NP-hard and cannot be approximated by any ratio larger than $\frac{2}{3}$.

Theorem (Baier, Köhler, and Skutella 2005)

p-DECOMPOSABLE-MAXIMUM-FLOW can be approximated by a ratio $\rho = \frac{2}{3}$ when $p \in \{2,3\}$ and by a ratio $\rho = \frac{1}{2}$ when $p \ge 4$.

Flows decomposable into few path-flows : Hardness

Theorem

For every fixed $p \ge 2$, the p-DECOMPOSABLE-MAX-FLOW problem is NP-hard. Moreover, unless P=NP, it cannot be approximated by any ratio larger than $\rho(p) = \min(\rho_1(p), \rho_2(p))$, where $\rho_1(p), \rho_2(p)$ are defined as follows:

$$p_1(p) = \begin{cases} \frac{5}{6} & \text{if } p = 0 \mod 4\\ \frac{5p-1}{6p-2} & \text{if } p = 1 \mod 4\\ \frac{5p-2}{6p} & \text{if } p = 2 \mod 4\\ \frac{5p-3}{6p-2} & \text{if } p = 3 \mod 4 \end{cases}$$

$$\rho_2(p) = \begin{cases}
\frac{4}{5} & \text{if } p \text{ is even} \\
\frac{4p-2}{5p-3} & \text{otherwise.}
\end{cases}$$

In particular, $\rho(2) = \frac{2}{3}$, $\rho(3) = \frac{3}{4}$, $\rho(p) \xrightarrow[p \to +\infty]{} \frac{4}{5}$, and $\rho(p) \leq \frac{9}{11}$ in general.

Flows decomposable into few disjoint path-flows.

$\rho\text{-}\mathrm{Vertex}\text{-}\mathrm{Decomposable}\text{-}\mathrm{Maximum}\text{-}\mathrm{Flow}$

Input : A network $\mathcal{N} = (D, s, t, c)$

Output : The maximum value of a flow f s.t. f decomposes into at most p path-flows intersecting exactly on $\{s, t\}$.

Theorem

For every fixed $p \ge 2$, p-VERTEX-DECOMPOSABLE-MAXIMUM-FLOW is NP-hard and cannot be approximated by any ratio larger than $\frac{2}{3}$.

Theorem

For every fixed $p \ge 2$, p-VERTEX-DECOMPOSABLE-MAXIMUM-FLOW can be approximated by a ratio $\rho = \frac{1}{H(p)}$ where $H(p) = \sum_{i=1}^{p} \frac{1}{i} \sim_{p} \ln(p)$.

Flows decomposable into few disjoint path-flows.

$\rho\text{-}\mathrm{Vertex}\text{-}\mathrm{Decomposable}\text{-}\mathrm{Maximum}\text{-}\mathrm{Flow}$

Input : A network $\mathcal{N} = (D, s, t, c)$

Output : The maximum value of a flow f s.t. f decomposes into at most p path-flows intersecting exactly on $\{s, t\}$.

Theorem

For every fixed $p \ge 2$, p-VERTEX-DECOMPOSABLE-MAXIMUM-FLOW is NP-hard and cannot be approximated by any ratio larger than $\frac{2}{3}$.

Theorem

For every fixed $p \ge 2$, p-VERTEX-DECOMPOSABLE-MAXIMUM-FLOW can be approximated by a ratio $\rho = \frac{1}{H(p)}$ where $H(p) = \sum_{i=1}^{p} \frac{1}{i} \sim_{p} \ln(p)$.

Flows decomposable into few disjoint path-flows.

$\rho\text{-}\mathrm{Vertex}\text{-}\mathrm{Decomposable}\text{-}\mathrm{Maximum}\text{-}\mathrm{Flow}$

Input : A network $\mathcal{N} = (D, s, t, c)$

Output : The maximum value of a flow f s.t. f decomposes into at most p path-flows intersecting exactly on $\{s, t\}$.

Theorem

For every fixed $p \ge 2$, p-VERTEX-DECOMPOSABLE-MAXIMUM-FLOW is NP-hard and cannot be approximated by any ratio larger than $\frac{2}{3}$.

Theorem

For every fixed $p \ge 2$, p-VERTEX-DECOMPOSABLE-MAXIMUM-FLOW can be approximated by a ratio $\rho = \frac{1}{H(p)}$ where $H(p) = \sum_{i=1}^{p} \frac{1}{i} \sim_{p} \ln(p)$.

Algorithm:

- If or every i ∈ {1,..., p}, find the largest capacity c_i s.t. D \ {uv ∈ A | c(uv) < c_i} contains i disjoint (s, t)-paths.
- $e return \max\{i \cdot c_i \mid i \in \{1, \ldots, p\}\}.$

- Let f^* be an optimal solution with path-flows P_1^*, \ldots, P_p^* of values respectively $c_1^* \geq \cdots \geq c_p^*$ and f be the flow computed by the algorithm above.
- For every $i \in \{1, \ldots, p\}$, $|f| \ge i \cdot c_i \ge i \cdot c_i^*$.
- Summing the inequalities above for every *i* we obtain:

$$|f| \cdot \sum_{i=1}^{p} rac{1}{i} \geq \sum_{i=1}^{p} c_i^* = |f^*|.$$

Algorithm:

- If or every i ∈ {1,..., p}, find the largest capacity c_i s.t. D \ {uv ∈ A | c(uv) < c_i} contains i disjoint (s, t)-paths.
- 2 return max $\{i \cdot c_i \mid i \in \{1, \dots, p\}\}$.

- Let f^* be an optimal solution with path-flows P_1^*, \ldots, P_p^* of values respectively $c_1^* \geq \cdots \geq c_p^*$ and f be the flow computed by the algorithm above.
- For every $i \in \{1, \ldots, p\}$, $|f| \ge i \cdot c_i \ge i \cdot c_i^*$.
- Summing the inequalities above for every *i* we obtain:

$$|f| \cdot \sum_{i=1}^{p} rac{1}{i} \geq \sum_{i=1}^{p} c_i^* = |f^*|.$$

Algorithm:

- If or every i ∈ {1,..., p}, find the largest capacity c_i s.t. D \ {uv ∈ A | c(uv) < c_i} contains i disjoint (s, t)-paths.
- $e return \max\{i \cdot c_i \mid i \in \{1, \ldots, p\}\}.$

- Let f^* be an optimal solution with path-flows P_1^*, \ldots, P_p^* of values respectively $c_1^* \geq \cdots \geq c_p^*$ and f be the flow computed by the algorithm above.
- For every $i \in \{1, \ldots, p\}$, $|f| \ge i \cdot c_i \ge i \cdot c_i^*$.
- Summing the inequalities above for every *i* we obtain:

$$|f| \cdot \sum_{i=1}^{p} rac{1}{i} \geq \sum_{i=1}^{p} c_i^* = |f^*|.$$

Algorithm:

- If or every i ∈ {1,..., p}, find the largest capacity c_i s.t. D \ {uv ∈ A | c(uv) < c_i} contains i disjoint (s, t)-paths.
- $e return \max\{i \cdot c_i \mid i \in \{1, \ldots, p\}\}.$

- Let f^* be an optimal solution with path-flows P_1^*, \ldots, P_p^* of values respectively $c_1^* \geq \cdots \geq c_p^*$ and f be the flow computed by the algorithm above.
- For every $i \in \{1, \ldots, p\}$, $|f| \ge i \cdot c_i \ge i \cdot c_i^*$.
- Summing the inequalities above for every *i* we obtain:

$$|f| \cdot \sum_{i=1}^{p} rac{1}{i} \geq \sum_{i=1}^{p} c_i^* = |f^*|.$$

Algorithm:

- If or every i ∈ {1,..., p}, find the largest capacity c_i s.t. D \ {uv ∈ A | c(uv) < c_i} contains i disjoint (s, t)-paths.
- $e return \max\{i \cdot c_i \mid i \in \{1, \ldots, p\}\}.$

- Let f^* be an optimal solution with path-flows P_1^*, \ldots, P_p^* of values respectively $c_1^* \geq \cdots \geq c_p^*$ and f be the flow computed by the algorithm above.
- For every $i \in \{1, \dots, p\}$, $|f| \ge i \cdot c_i \ge i \cdot c_i^*$.
- Summing the inequalities above for every *i* we obtain:

$$|f| \cdot \sum_{i=1}^{p} \frac{1}{i} \ge \sum_{i=1}^{p} c_i^* = |f^*|$$

p-VERTEX-DECOMPOSABLE-MAXIMUM-FLOW on acyclic networks

Theorem

When p is part of the input, p-VERTEX-DECOMPOSABLE-MAXIMUM-FLOW on acyclic networks is NP-hard, even when the capacities are in $\{1, 2\}$.

Theorem

p-VERTEX-DECOMPOSABLE-MAXIMUM-FLOW on acyclic networks is solvable in time $O(n^{f(p)})$ for some computable function f.

Theorem

When parameterized by p, p-VERTEX-DECOMPOSABLE-MAXIMUM-FLOW on acyclic networks is W[1]-hard.

14 / 19

p-VERTEX-DECOMPOSABLE-MAXIMUM-FLOW on acyclic networks

Theorem

When p is part of the input, p-VERTEX-DECOMPOSABLE-MAXIMUM-FLOW on acyclic networks is NP-hard, even when the capacities are in $\{1, 2\}$.

Theorem

p-VERTEX-DECOMPOSABLE-MAXIMUM-FLOW on acyclic networks is solvable in time $O(n^{f(p)})$ for some computable function f.

Theorem

When parameterized by p, p-VERTEX-DECOMPOSABLE-MAXIMUM-FLOW on acyclic networks is W[1]-hard.

p-VERTEX-DECOMPOSABLE-MAXIMUM-FLOW on acyclic networks

Theorem

When p is part of the input, p-VERTEX-DECOMPOSABLE-MAXIMUM-FLOW on acyclic networks is NP-hard, even when the capacities are in $\{1, 2\}$.

Theorem

p-VERTEX-DECOMPOSABLE-MAXIMUM-FLOW on acyclic networks is solvable in time $O(n^{f(p)})$ for some computable function f.

Theorem

When parameterized by p, p-VERTEX-DECOMPOSABLE-MAXIMUM-FLOW on acyclic networks is W[1]-hard.

- $W \subseteq V(D) \setminus \{s, t\}$: an ordered set of p vertices (v_1, \ldots, v_p) .
 - A W-tricot T is a sequence of paths (Q_1, \ldots, Q_p) pairwise intersecting exactly on $\{s\}$ s.t. $end(Q_i) = v_i$.

- $W \subseteq V(D) \setminus \{s, t\}$: an ordered set of p vertices (v_1, \ldots, v_p) .
 - A *W*-tricot *T* is a sequence of paths (Q_1, \ldots, Q_p) pairwise intersecting exactly on $\{s\}$ s.t. $end(Q_i) = v_i$.
 - The value tv(T) of T is (c_1, \ldots, c_p) where c_i is the minimum capacity along Q_i .

- $W \subseteq V(D) \setminus \{s, t\}$: an ordered set of p vertices (v_1, \ldots, v_p) .
 - A *W*-tricot *T* is a sequence of paths (Q_1, \ldots, Q_p) pairwise intersecting exactly on $\{s\}$ s.t. $end(Q_i) = v_i$.
 - The value tv(T) of T is (c_1, \ldots, c_p) where c_i is the minimum capacity along Q_i .
 - The total value of T is $\sum_{i=1}^{p} c_i$.

- $W \subseteq V(D) \setminus \{s, t\}$: an ordered set of p vertices (v_1, \ldots, v_p) .
 - A *W*-tricot *T* is a sequence of paths (Q_1, \ldots, Q_p) pairwise intersecting exactly on $\{s\}$ s.t. $end(Q_i) = v_i$.
 - The value tv(T) of T is (c_1, \ldots, c_p) where c_i is the minimum capacity along Q_i .
 - The total value of T is $\sum_{i=1}^{p} c_i$.
 - We have $\operatorname{value}(\mathcal{T}) \preceq \operatorname{value}(\mathcal{T}')$ iff $\forall i \in \{1, \dots, p\}, \ c_i \leq c'_i$.

Properties of the W-tricots

• After subdividing every arc *vt*, the optimal solution of *p*-VERTEX-DECOMPOSABLE-MAXIMUM-FLOW is exactly:

 $\max_{W \subseteq N^{-}(t), |W| \leq p} \max\{\operatorname{tv}(T) \mid T \text{ is a } W\text{-tricot}\}. \quad (\star)$

Properties of the W-tricots

• After subdividing every arc *vt*, the optimal solution of *p*-VERTEX-DECOMPOSABLE-MAXIMUM-FLOW is exactly:

 $\max_{W \subseteq N^{-}(t), |W| \le p} \max\{\operatorname{tv}(T) \mid T \text{ is a } W\text{-tricot}\}. \quad (\star)$

• The size of $\{value(T) \mid T \text{ is a } W\text{-tricot}\}\$ is bounded by $O(m^p)$.

Properties of the W-tricots

• After subdividing every arc *vt*, the optimal solution of *p*-VERTEX-DECOMPOSABLE-MAXIMUM-FLOW is exactly:

 $\max_{W \subseteq N^{-}(t), |W| \le p} \max\{\operatorname{tv}(T) \mid T \text{ is a } W\text{-tricot}\}. \quad (\star)$

- The size of $\{value(T) \mid T \text{ is a } W\text{-tricot}\}\$ is bounded by $O(m^p)$.
- Goal: compute $\{value(T) \mid T \text{ is a } W\text{-tricot}\}$ for every W, and return (\star) .

- L : list indexed by the p-tuples of $V(D) \setminus \{s\}$. Each cell L[W] is a set of W-tricots.
 - $\forall W \subseteq N^+(s), L[W] \leftarrow \{\text{the only } W \text{-tricot}\}.$

- L : list indexed by the p-tuples of $V(D) \setminus \{s\}$. Each cell L[W] is a set of W-tricots.
 - $\forall W \subseteq N^+(s), L[W] \leftarrow \{\text{the only } W \text{-tricot}\}.$
 - Fix an acyclic ordering v₁,..., v_n with initial vertices N⁺[s], and the corresponding lexicographic ordering of the p-tuples W₁,..., W_r where r = (ⁿ_p) ⋅ p!.

- L : list indexed by the p-tuples of $V(D) \setminus \{s\}$. Each cell L[W] is a set of W-tricots.
 - $\forall W \subseteq N^+(s), L[W] \leftarrow \{\text{the only } W \text{-tricot}\}.$
 - Fix an acyclic ordering v₁,..., v_n with initial vertices N⁺[s], and the corresponding lexicographic ordering of the p-tuples W₁,..., W_r where r = (ⁿ_p) ⋅ p!.
 - $\forall W_i$ in this order, $\forall T = (Q_1, \ldots, Q_p) \in L[W_i]$, consider every extension $T' = (Q_1, \ldots, Q_j \cup \{y\}, \ldots, Q_p)$ of T s.t. $\forall k$, $end(Q_k) \prec y$.

- L : list indexed by the p-tuples of $V(D) \setminus \{s\}$. Each cell L[W] is a set of W-tricots.
 - $\forall W \subseteq N^+(s), L[W] \leftarrow \{\text{the only } W \text{-tricot}\}.$
 - Fix an acyclic ordering v₁,..., v_n with initial vertices N⁺[s], and the corresponding lexicographic ordering of the p-tuples W₁,..., W_r where r = (ⁿ_p) ⋅ p!.
 - $\forall W_i$ in this order, $\forall T = (Q_1, \ldots, Q_p) \in L[W_i]$, consider every extension $T' = (Q_1, \ldots, Q_j \cup \{y\}, \ldots, Q_p)$ of T s.t. $\forall k$, $end(Q_k) \prec y$.
 - If for all W'-tricot $\tilde{T} \in L[W']$, value $(T') \not\preceq \text{value}(\tilde{T})$, then $L[W'] \leftarrow L[W'] \cup \{T'\}$.

Validity of the algorithm

Invariant: when W_i is considered, $\forall W_i$ -tricot T, $L[W_i]$ contains a tricot T' s.t. $value(T) \leq value(T')$.

Validity of the algorithm

Invariant: when W_i is considered, $\forall W_i$ -tricot T, $L[W_i]$ contains a tricot T' s.t. $value(T) \leq value(T')$.

▶ 4 Ξ

Open questions

Question: Is there a way to approximate the $(\Delta^+ \leq k)$ -MAXIMUM-FLOW problem?

Question: What is the best approximation guarantee one can obtain for the p-DECOMPOSABLE-MAXIMUM-FLOW problem when p > 2?

$$\frac{2}{3} \le \rho(3) \le \frac{3}{4}$$

Thank you!

イロト イボト イラト イラ

Open questions

Question: Is there a way to approximate the $(\Delta^+ \leq k)$ -MAXIMUM-FLOW problem?

Question: What is the best approximation guarantee one can obtain for the p-DECOMPOSABLE-MAXIMUM-FLOW problem when p > 2?

$$rac{2}{3} \leq
ho(3) \leq rac{3}{4}$$

Thank you!

イロト イボト イヨト イヨ

Open questions

Question: Is there a way to approximate the ($\Delta^+ \leq k$)-MAXIMUM-FLOW problem?

Question: What is the best approximation guarantee one can obtain for the p-DECOMPOSABLE-MAXIMUM-FLOW problem when p > 2?

$$rac{2}{3} \leq
ho(3) \leq rac{3}{4}$$

Thank you!

Image: A math and A