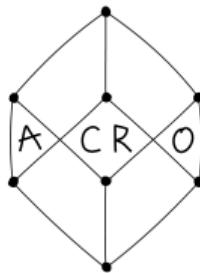


Edge-colouring and orientations: applications to degree- and χ -boundedness

Arnab Char, Ken-ichi Kawarabayashi, and Lucas Picasarri-Arrieta

National Institute of Informatics, The University of Tokyo, Japan



Ramsey Theorem

Ramsey Number $R(s, t)$: min. integer n such that all (blue/red)-edge-colourings of K_n contains K_s in red or K_t in blue.

$$R(3, 3) = 6$$

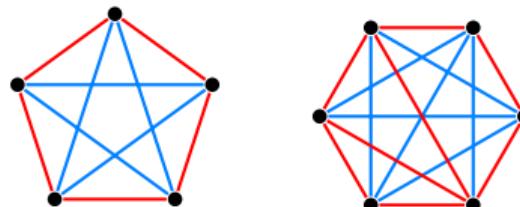
Theorem (Ramsey, 1930; Erdős and Szekeres, 1935)

For all $s, t \in \mathbb{N}$, $R(s, t)$ exists and $R(s, t) \leq \binom{s+t-2}{s-1}$.

Question: What can we say about the monochromatic induced substructures in general edge-coloured graphs ?

Ramsey Theorem

Ramsey Number $R(s, t)$: min. integer n such that all (blue/red)-edge-colourings of K_n contains K_s in red or K_t in blue.



$$R(3, 3) = 6$$

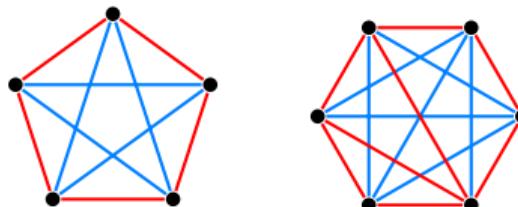
Theorem (Ramsey, 1930; Erdős and Szekeres, 1935)

For all $s, t \in \mathbb{N}$, $R(s, t)$ exists and $R(s, t) \leq \binom{s+t-2}{s-1}$.

Question: What can we say about the monochromatic induced substructures in general edge-coloured graphs ?

Ramsey Theorem

Ramsey Number $R(s, t)$: min. integer n such that all (blue/red)-edge-colourings of K_n contains K_s in red or K_t in blue.



$$R(3, 3) = 6$$

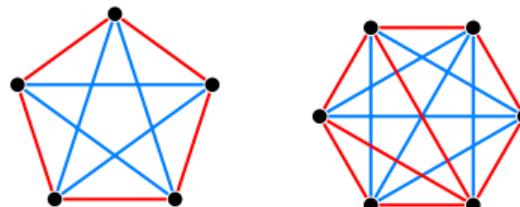
Theorem (Ramsey, 1930; Erdős and Szekeres, 1935)

For all $s, t \in \mathbb{N}$, $R(s, t)$ exists and $R(s, t) \leq \binom{s+t-2}{s-1}$.

Question: What can we say about the monochromatic induced substructures in general edge-coloured graphs ?

Ramsey Theorem

Ramsey Number $R(s, t)$: min. integer n such that all (blue/red)-edge-colourings of K_n contains K_s in red or K_t in blue.



$$R(3, 3) = 6$$

Theorem (Ramsey, 1930; Erdős and Szekeres, 1935)

For all $s, t \in \mathbb{N}$, $R(s, t)$ exists and $R(s, t) \leq \binom{s+t-2}{s-1}$.

Question: What can we say about the **monochromatic induced substructures** in general edge-coloured graphs ?

Monochromatic induced substructures in dense graphs

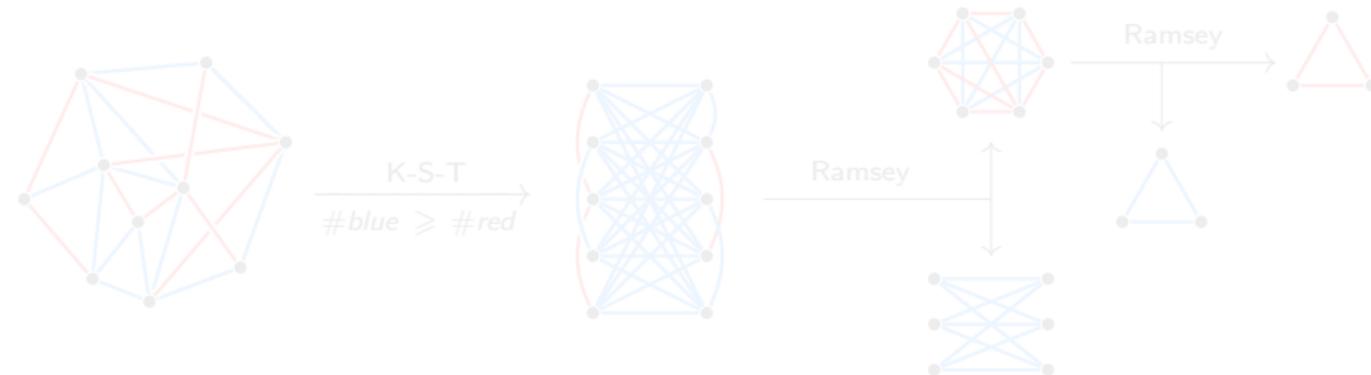
Theorem (Kővári, Sós, and Turán, 1954)

For every graph G of order n , if $K_{s,s} \not\subseteq G$ then G has at most $f(s) \cdot n^{2-\frac{1}{s}}$ edges.

Corollary

For every $\varepsilon > 0$, if G is a 2-edge-coloured graph of order $n \geq f(\varepsilon, s, t)$ with at least $\varepsilon \cdot n^2$ edges, then G contains a monochromatic induced copy of $K_{s,s}$ or K_t .

Proof:



Monochromatic induced substructures in dense graphs

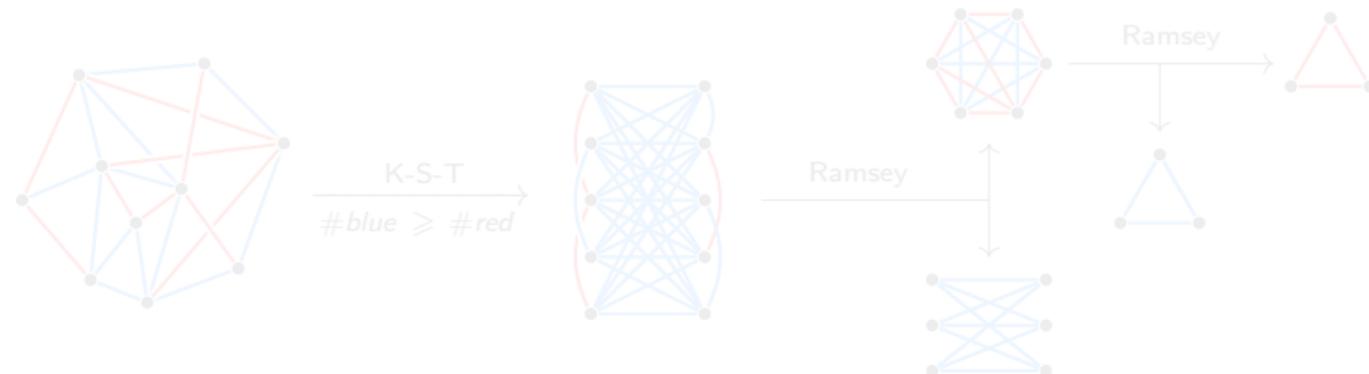
Theorem (Kővári, Sós, and Turán, 1954)

For every graph G of order n , if $K_{s,s} \not\subseteq G$ then G has at most $f(s) \cdot n^{2-\frac{1}{s}}$ edges.

Corollary

For every $\varepsilon > 0$, if G is a 2-edge-coloured graph of order $n \geq f(\varepsilon, s, t)$ with at least $\varepsilon \cdot n^2$ edges, then G contains a monochromatic induced copy of $K_{s,s}$ or K_t .

Proof:



Monochromatic induced substructures in dense graphs

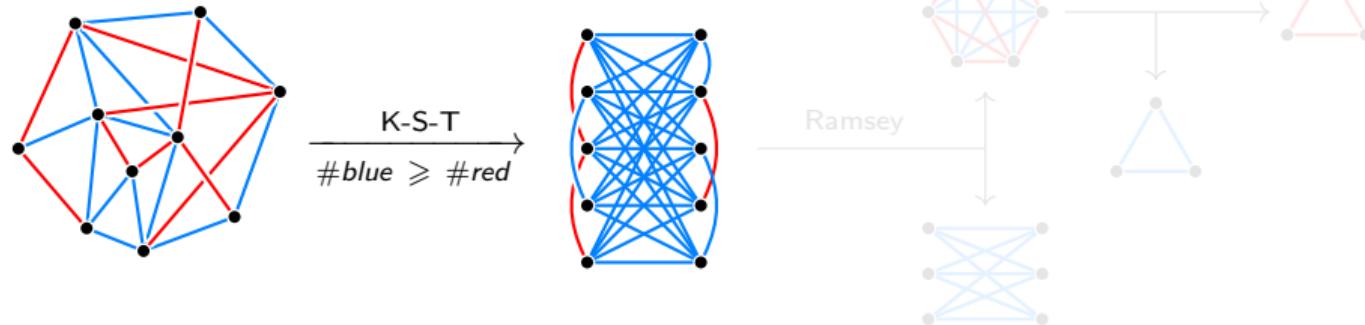
Theorem (Kővári, Sós, and Turán, 1954)

For every graph G of order n , if $K_{s,s} \not\subseteq G$ then G has at most $f(s) \cdot n^{2-\frac{1}{s}}$ edges.

Corollary

For every $\varepsilon > 0$, if G is a 2-edge-coloured graph of order $n \geq f(\varepsilon, s, t)$ with at least $\varepsilon \cdot n^2$ edges, then G contains a monochromatic induced copy of $K_{s,s}$ or K_t .

Proof:



Monochromatic induced substructures in dense graphs

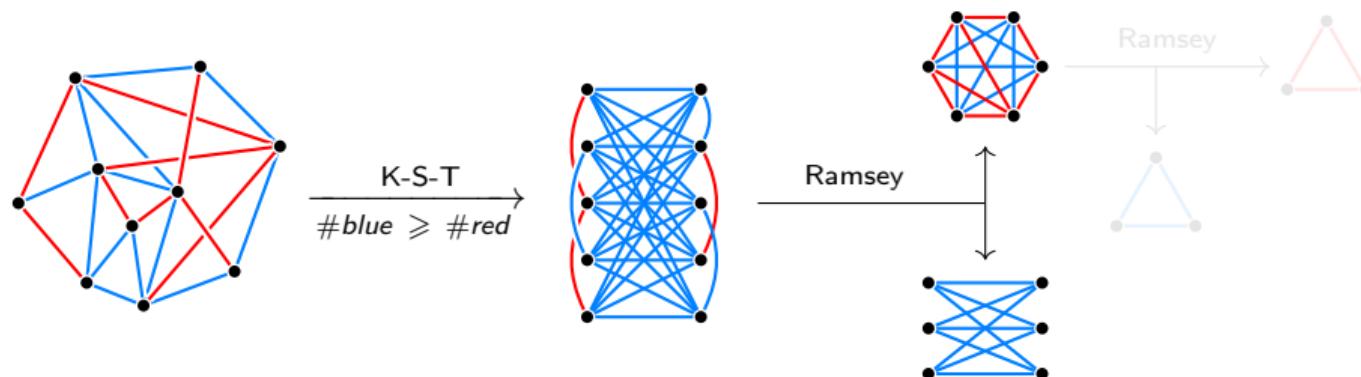
Theorem (Kővári, Sós, and Turán, 1954)

For every graph G of order n , if $K_{s,s} \not\subseteq G$ then G has at most $f(s) \cdot n^{2-\frac{1}{s}}$ edges.

Corollary

For every $\varepsilon > 0$, if G is a 2-edge-coloured graph of order $n \geq f(\varepsilon, s, t)$ with at least $\varepsilon \cdot n^2$ edges, then G contains a monochromatic induced copy of $K_{s,s}$ or K_t .

Proof:



Monochromatic induced substructures in dense graphs

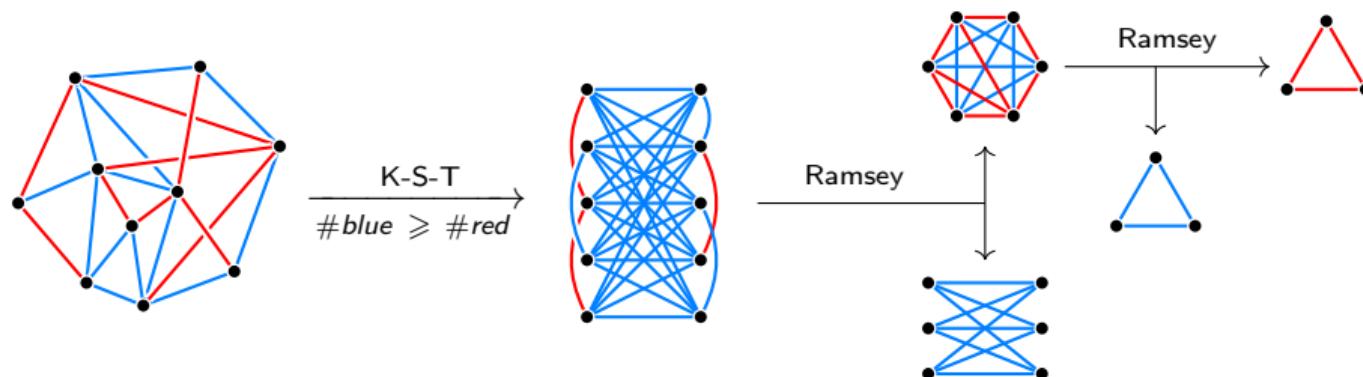
Theorem (Kővári, Sós, and Turán, 1954)

For every graph G of order n , if $K_{s,s} \not\subseteq G$ then G has at most $f(s) \cdot n^{2-\frac{1}{s}}$ edges.

Corollary

For every $\varepsilon > 0$, if G is a 2-edge-coloured graph of order $n \geq f(\varepsilon, s, t)$ with at least $\varepsilon \cdot n^2$ edges, then G contains a monochromatic induced copy of $K_{s,s}$ or K_t .

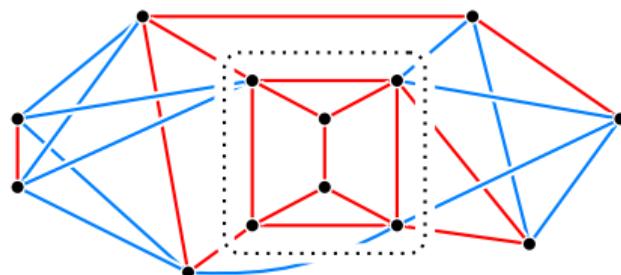
Proof:



Monochromatic induced substructures in graphs with large minimum degree

Theorem (Char, Kawarabayashi, P-A, 2025)

If G is a 2-edge-coloured graph with $\delta(G) \geq f(d)$ then G contains a **monochromatic induced subgraph H** with $\delta(H) \geq d$.



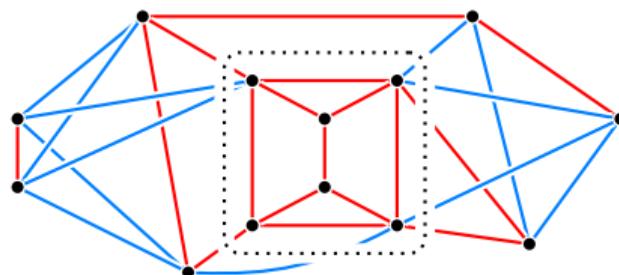
Remarks:

- Trivial if H is not induced (every graph with average degree $2d$ has a subgraph with minimum degree d).
- Generalises Ramsey's Theorem (up to the value of f).
- Can be extended to k -edge-coloured graphs.

Monochromatic induced substructures in graphs with large minimum degree

Theorem (Char, Kawarabayashi, P-A, 2025)

If G is a 2-edge-coloured graph with $\delta(G) \geq f(d)$ then G contains a **monochromatic induced subgraph H** with $\delta(H) \geq d$.



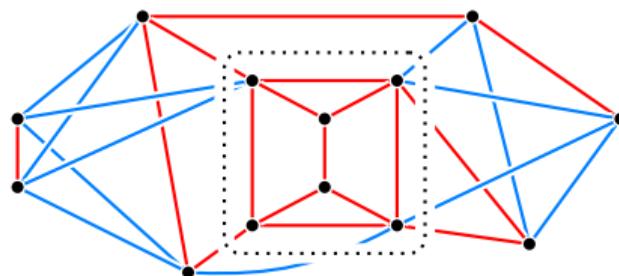
Remarks:

- Trivial if H is not induced (every graph with average degree $2d$ has a subgraph with minimum degree d).
- Generalises Ramsey's Theorem (up to the value of f).
- Can be extended to k -edge-coloured graphs.

Monochromatic induced substructures in graphs with large minimum degree

Theorem (Char, Kawarabayashi, P-A, 2025)

If G is a 2-edge-coloured graph with $\delta(G) \geq f(d)$ then G contains a **monochromatic induced subgraph H** with $\delta(H) \geq d$.



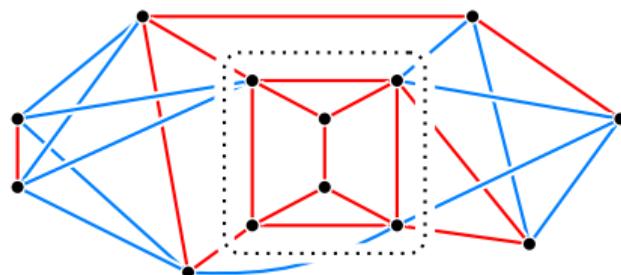
Remarks:

- Trivial if H is not induced (every graph with average degree $2d$ has a subgraph with minimum degree d).
- Generalises Ramsey's Theorem (up to the value of f).
- Can be extended to k -edge-coloured graphs.

Monochromatic induced substructures in graphs with large minimum degree

Theorem (Char, Kawarabayashi, P-A, 2025)

If G is a 2-edge-coloured graph with $\delta(G) \geq f(d)$ then G contains a **monochromatic induced subgraph H** with $\delta(H) \geq d$.



Remarks:

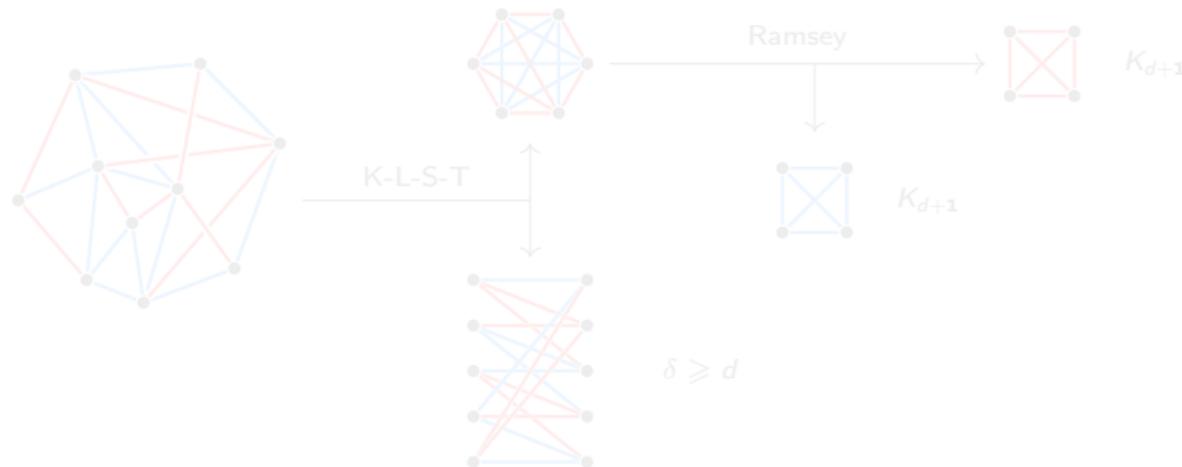
- Trivial if H is not induced (every graph with average degree $2d$ has a subgraph with minimum degree d).
- Generalises Ramsey's Theorem (up to the value of f).
- Can be extended to k -edge-coloured graphs.

Proof (1/3) : Reduce to the bipartite case

Theorem (Kwan, Letzter, Sudakov, Tran, 2020)

Every graph G with $\delta(G) \geq f(s, d)$ contains K_s or an induced bipartite subgraph H with $\delta(H) \geq d$.

⇒ we only have to prove the result for bipartite graphs:

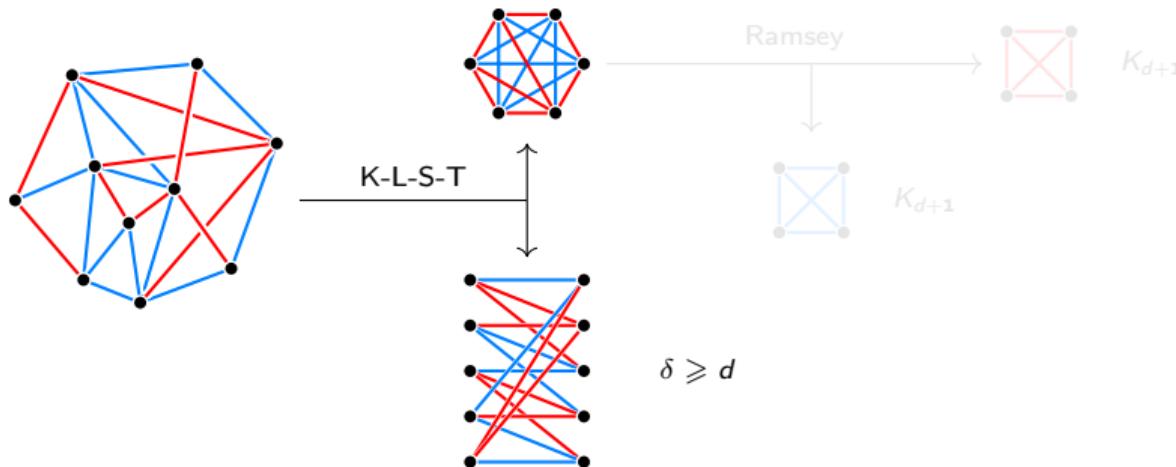


Proof (1/3) : Reduce to the bipartite case

Theorem (Kwan, Letzter, Sudakov, Tran, 2020)

Every graph G with $\delta(G) \geq f(s, d)$ contains K_s or an induced bipartite subgraph H with $\delta(H) \geq d$.

⇒ we only have to prove the result for bipartite graphs:

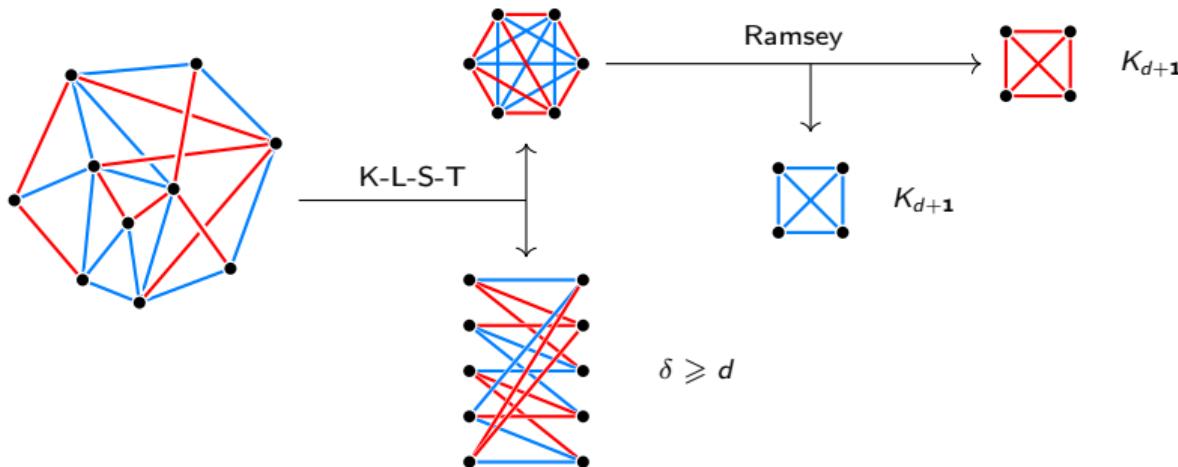


Proof (1/3) : Reduce to the bipartite case

Theorem (Kwan, Letzter, Sudakov, Tran, 2020)

Every graph G with $\delta(G) \geq f(s, d)$ contains K_s or an induced bipartite subgraph H with $\delta(H) \geq d$.

⇒ we only have to prove the result for bipartite graphs:



Proof (2/3) : Reduce to the unbalanced bipartite case

Lemma (Kühn and Osthus, 2004)

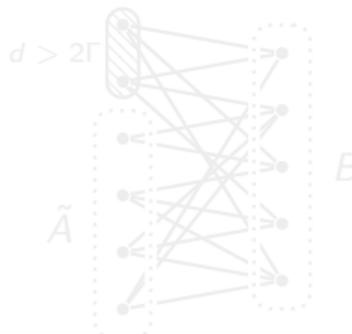
Every bipartite graph $G = (A \cup B, E)$ with average degree $\text{Ad}(G) = \Gamma > 4d \geq 32$ contains an **induced bipartite subgraph** $G' = (A' \cup B', E')$ such that:

- ❶ $|A'| \geq \frac{\Gamma}{32d} \cdot |B'|$ and
- ❷ $d \leq d_{G'}(a) \leq 16d$ for every $a \in A'$.

Proof: Assume that $|A| \geq |B|$ and $\text{Ad}(H) \leq \Gamma$ for every $H \subseteq_{\text{ind}} G$.

$$\delta(G) \geq \Gamma/2$$

$$\frac{|A| \geq |B|}{\text{Ad}(G) = \Gamma} \rightarrow$$



$$\Gamma/2 \leq d(a) \leq 2\Gamma,$$

$$|\tilde{A}| \geq |B|/2$$

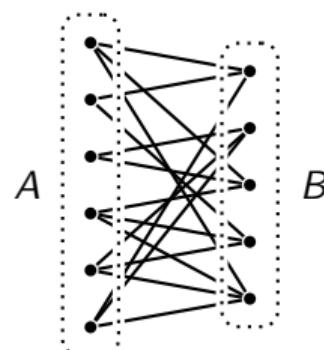
Proof (2/3) : Reduce to the unbalanced bipartite case

Lemma (Kühn and Osthus, 2004)

Every bipartite graph $G = (A \cup B, E)$ with average degree $\text{Ad}(G) = \Gamma > 4d \geq 32$ contains an **induced bipartite subgraph** $G' = (A' \cup B', E')$ such that:

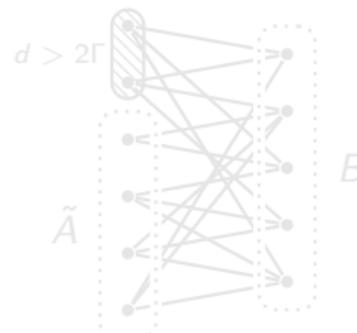
- ① $|A'| \geq \frac{\Gamma}{32d} \cdot |B'|$ and
- ② $d \leq d_{G'}(a) \leq 16d$ for every $a \in A'$.

Proof: Assume that $|A| \geq |B|$ and $\text{Ad}(H) \leq \Gamma$ for every $H \subseteq_{\text{ind}} G$.



$$\delta(G) \geq \Gamma/2$$

$$\frac{|A| \geq |B|}{\text{Ad}(G) = \Gamma} \rightarrow$$



$$\Gamma/2 \leq d(a) \leq 2\Gamma, \\ |\tilde{A}| \geq |B|/2$$

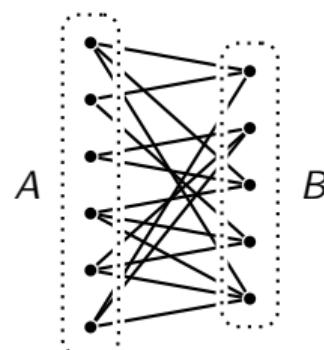
Proof (2/3) : Reduce to the unbalanced bipartite case

Lemma (Kühn and Osthus, 2004)

Every bipartite graph $G = (A \cup B, E)$ with average degree $\text{Ad}(G) = \Gamma > 4d \geq 32$ contains an **induced bipartite subgraph** $G' = (A' \cup B', E')$ such that:

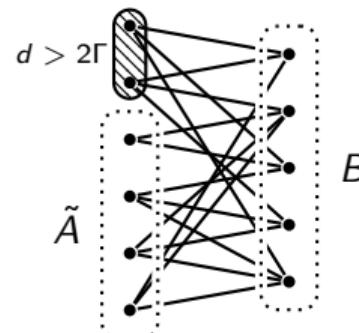
- ① $|A'| \geq \frac{\Gamma}{32d} \cdot |B'|$ and
- ② $d \leq d_{G'}(a) \leq 16d$ for every $a \in A'$.

Proof: Assume that $|A| \geq |B|$ and $\text{Ad}(H) \leq \Gamma$ for every $H \subseteq_{\text{ind}} G$.



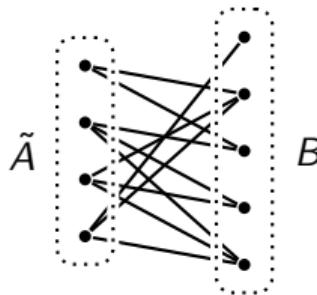
$$\frac{|A| \geq |B|}{\text{Ad}(G) = \Gamma}$$

$$\delta(G) \geq \Gamma/2$$



$$\Gamma/2 \leq d(a) \leq 2\Gamma,$$

$$|\tilde{A}| \geq |B|/2$$



keep each $b \in B$ with
probability $4d/\Gamma$

$$\Gamma/2 \leq d(a) \leq 2\Gamma,$$

$$|\tilde{A}| \geq |B|/2$$

$$d \leq d(a) \leq 16d,$$

$$|A'| \geq \frac{\Gamma}{32d} |B'|$$

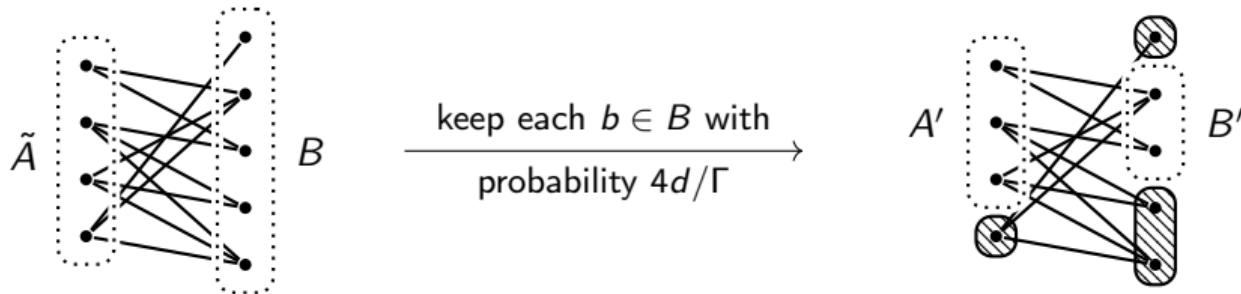
By Chernoff's Bound:

- $\mathbb{P}\left(|B'| \geq \frac{8d}{\Gamma} |B|\right) = \mathbb{P}\left(|B'| \geq 2\mathbb{E}(|B'|)\right) \leq e^{-8d/3} \leq 1/4.$
- $\mathbb{P}(a \notin A') = \mathbb{P}(X_a < d) + \mathbb{P}(X_a > 16d) \leq \mathbb{P}\left(X_a < \frac{1}{2}\mathbb{E}(X_a)\right) + \mathbb{P}\left(X_a > 2\mathbb{E}(X_a)\right) \leq 1/4.$

By Markov's Inequality:

- $\mathbb{P}\left(|A'| \leq |\tilde{A}|/2\right) = \mathbb{P}\left(|\bar{A}'| \geq |\tilde{A}|/2\right) \leq \mathbb{P}\left(|\bar{A}'| \geq 2\mathbb{E}(|\bar{A}'|)\right) \leq 1/2.$

\Rightarrow with positive probability, $|A'| \geq \frac{1}{2}|\tilde{A}| \geq \frac{1}{4}|B| \geq \frac{\Gamma}{32d} |B'|.$



$$\Gamma/2 \leq d(a) \leq 2\Gamma, \\ |\tilde{A}| \geq |B|/2$$

$$d \leq d(a) \leq 16d, \\ |A'| \geq \frac{\Gamma}{32d} |B'|$$

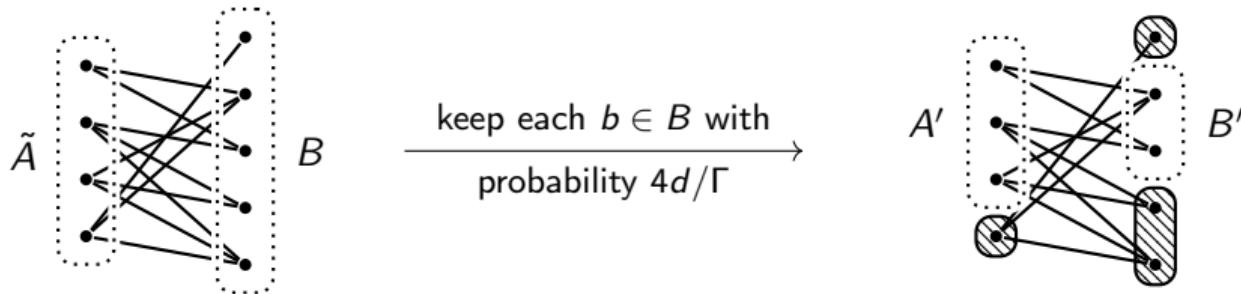
By Chernoff's Bound:

- $\mathbb{P}\left(|B'| \geq \frac{8d}{\Gamma} |B|\right) = \mathbb{P}\left(|B'| \geq 2\mathbb{E}(|B'|)\right) \leq e^{-8d/3} \leq 1/4.$
- $\mathbb{P}(a \notin A') = \mathbb{P}(X_a < d) + \mathbb{P}(X_a > 16d) \leq \mathbb{P}\left(X_a < \frac{1}{2}\mathbb{E}(X_a)\right) + \mathbb{P}\left(X_a > 2\mathbb{E}(X_a)\right) \leq 1/4.$

By Markov's Inequality:

- $\mathbb{P}\left(|A'| \leq |\tilde{A}|/2\right) = \mathbb{P}\left(|\bar{A}'| \geq |\tilde{A}|/2\right) \leq \mathbb{P}\left(|\bar{A}'| \geq 2\mathbb{E}(|\bar{A}'|)\right) \leq 1/2.$

\Rightarrow with positive probability, $|A'| \geq \frac{1}{2}|\tilde{A}| \geq \frac{1}{4}|B| \geq \frac{\Gamma}{32d}|B'|$.



$$\Gamma/2 \leq d(a) \leq 2\Gamma,$$

$$|\tilde{A}| \geq |B|/2$$

$$d \leq d(a) \leq 16d,$$

$$|A'| \geq \frac{\Gamma}{32d} |B'|$$

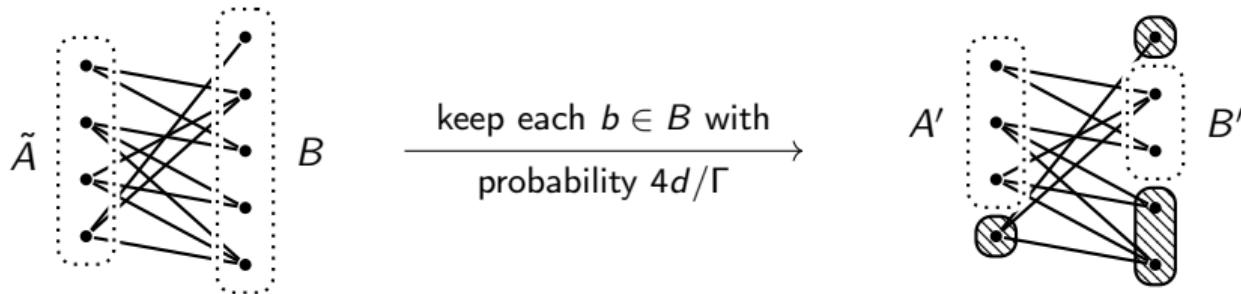
By Chernoff's Bound:

- $\mathbb{P}\left(|B'| \geq \frac{8d}{\Gamma} |B|\right) = \mathbb{P}\left(|B'| \geq 2\mathbb{E}(|B'|)\right) \leq e^{-8d/3} \leq 1/4.$
- $\mathbb{P}(a \notin A') = \mathbb{P}(X_a < d) + \mathbb{P}(X_a > 16d) \leq \mathbb{P}\left(X_a < \frac{1}{2}\mathbb{E}(X_a)\right) + \mathbb{P}\left(X_a > 2\mathbb{E}(X_a)\right) \leq 1/4.$

By Markov's Inequality:

- $\mathbb{P}\left(|A'| \leq |\tilde{A}|/2\right) = \mathbb{P}\left(|\bar{A}'| \geq |\tilde{A}|/2\right) \leq \mathbb{P}\left(|\bar{A}'| \geq 2\mathbb{E}(|\bar{A}'|)\right) \leq 1/2.$

\Rightarrow with positive probability, $|A'| \geq \frac{1}{2}|\tilde{A}| \geq \frac{1}{4}|B| \geq \frac{\Gamma}{32d} |B'|.$



$$\Gamma/2 \leq d(a) \leq 2\Gamma, \\ |\tilde{A}| \geq |B|/2$$

$$d \leq d(a) \leq 16d, \\ |A'| \geq \frac{\Gamma}{32d} |B'|$$

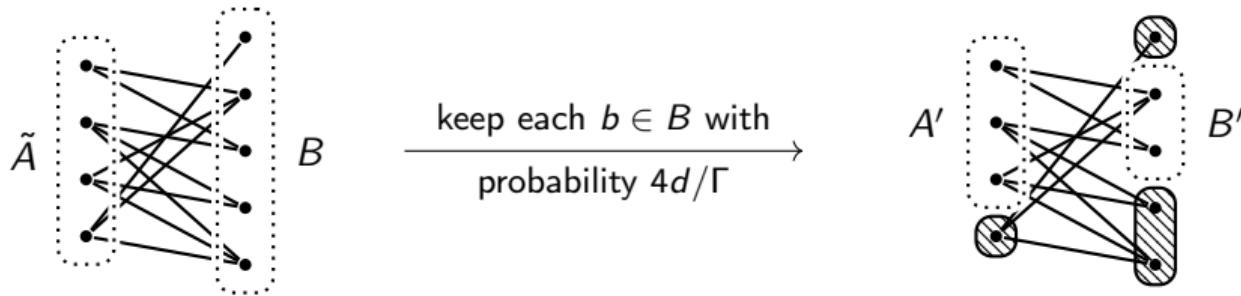
By Chernoff's Bound:

- $\mathbb{P}\left(|B'| \geq \frac{8d}{\Gamma} |B|\right) = \mathbb{P}\left(|B'| \geq 2\mathbb{E}(|B'|)\right) \leq e^{-8d/3} \leq 1/4.$
- $\mathbb{P}(a \notin A') = \mathbb{P}(X_a < d) + \mathbb{P}(X_a > 16d) \leq \mathbb{P}\left(X_a < \frac{1}{2}\mathbb{E}(X_a)\right) + \mathbb{P}\left(X_a > 2\mathbb{E}(X_a)\right) \leq 1/4.$

By Markov's Inequality:

- $\mathbb{P}\left(|A'| \leq |\tilde{A}|/2\right) = \mathbb{P}\left(|\bar{A}'| \geq |\tilde{A}|/2\right) \leq \mathbb{P}\left(|\bar{A}'| \geq 2\mathbb{E}(|\bar{A}'|)\right) \leq 1/2.$

\Rightarrow with positive probability, $|A'| \geq \frac{1}{2}|\tilde{A}| \geq \frac{1}{4}|B| \geq \frac{\Gamma}{32d} |B'|.$



$$\Gamma/2 \leq d(a) \leq 2\Gamma, \\ |\tilde{A}| \geq |B|/2$$

$$d \leq d(a) \leq 16d, \\ |A'| \geq \frac{\Gamma}{32d} |B'|$$

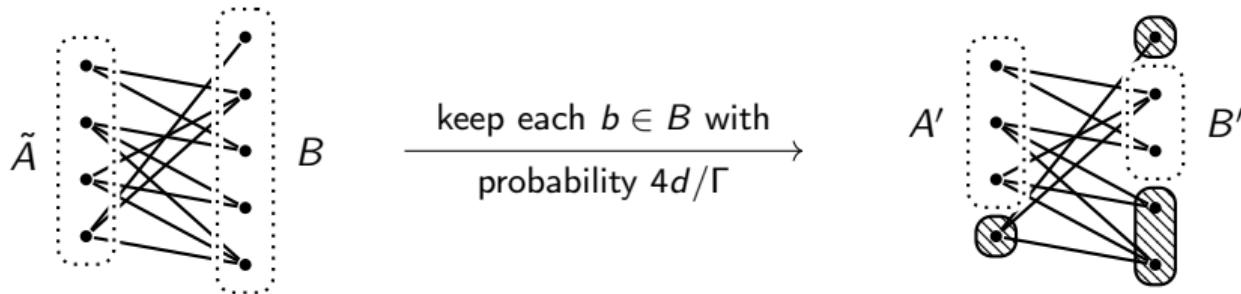
By Chernoff's Bound:

- $\mathbb{P}\left(|B'| \geq \frac{8d}{\Gamma} |B|\right) = \mathbb{P}\left(|B'| \geq 2\mathbb{E}(|B'|)\right) \leq e^{-8d/3} \leq 1/4.$
- $\mathbb{P}(a \notin A') = \mathbb{P}(X_a < d) + \mathbb{P}(X_a > 16d) \leq \mathbb{P}\left(X_a < \frac{1}{2}\mathbb{E}(X_a)\right) + \mathbb{P}\left(X_a > 2\mathbb{E}(X_a)\right) \leq 1/4.$

By Markov's Inequality:

- $\mathbb{P}\left(|A'| \leq |\tilde{A}|/2\right) = \mathbb{P}\left(|\bar{A}'| \geq |\tilde{A}|/2\right) \leq \mathbb{P}\left(|\bar{A}'| \geq 2\mathbb{E}(|\bar{A}'|)\right) \leq 1/2.$

\Rightarrow with positive probability, $|A'| \geq \frac{1}{2}|\tilde{A}| \geq \frac{1}{4}|B| \geq \frac{\Gamma}{32d} |B'|.$



$$\Gamma/2 \leq d(a) \leq 2\Gamma,$$

$$|\tilde{A}| \geq |B|/2$$

$$d \leq d(a) \leq 16d,$$

$$|A'| \geq \frac{\Gamma}{32d} |B'|$$

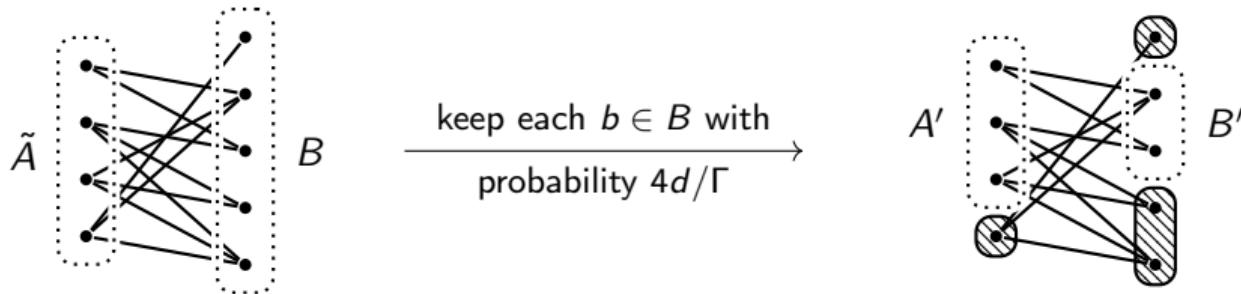
By Chernoff's Bound:

- $\mathbb{P}\left(|B'| \geq \frac{8d}{\Gamma} |B|\right) = \mathbb{P}\left(|B'| \geq 2\mathbb{E}(|B'|)\right) \leq e^{-8d/3} \leq 1/4.$
- $\mathbb{P}(a \notin A') = \mathbb{P}(X_a < d) + \mathbb{P}(X_a > 16d) \leq \mathbb{P}\left(X_a < \frac{1}{2}\mathbb{E}(X_a)\right) + \mathbb{P}\left(X_a > 2\mathbb{E}(X_a)\right) \leq 1/4.$

By Markov's Inequality:

- $\mathbb{P}\left(|A'| \leq |\tilde{A}|/2\right) = \mathbb{P}\left(|\bar{A}'| \geq |\tilde{A}|/2\right) \leq \mathbb{P}\left(|\bar{A}'| \geq 2\mathbb{E}(|\bar{A}'|)\right) \leq 1/2.$

\Rightarrow with positive probability, $|A'| \geq \frac{1}{2}|\tilde{A}| \geq \frac{1}{4}|B| \geq \frac{\Gamma}{32d} |B'|.$



$$\Gamma/2 \leq d(a) \leq 2\Gamma,$$

$$|\tilde{A}| \geq |B|/2$$

$$d \leq d(a) \leq 16d,$$

$$|A'| \geq \frac{\Gamma}{32d} |B'|$$

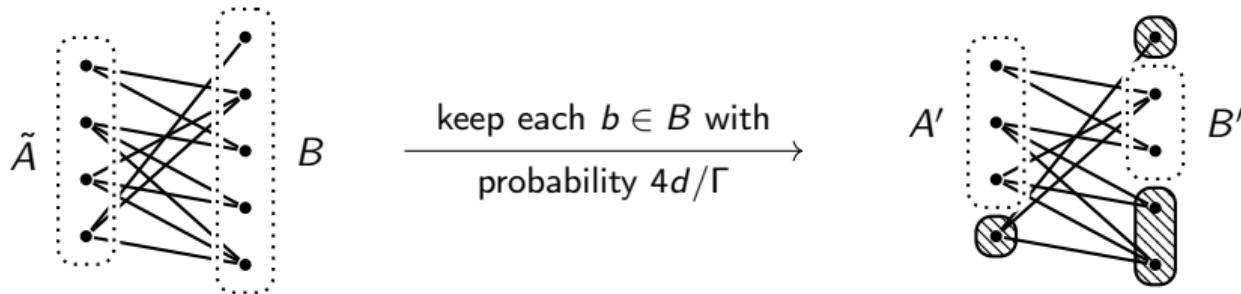
By Chernoff's Bound:

- $\mathbb{P}\left(|B'| \geq \frac{8d}{\Gamma} |B|\right) = \mathbb{P}\left(|B'| \geq 2\mathbb{E}(|B'|)\right) \leq e^{-8d/3} \leq 1/4.$
- $\mathbb{P}(a \notin A') = \mathbb{P}(X_a < d) + \mathbb{P}(X_a > 16d) \leq \mathbb{P}\left(X_a < \frac{1}{2}\mathbb{E}(X_a)\right) + \mathbb{P}\left(X_a > 2\mathbb{E}(X_a)\right) \leq 1/4.$

By Markov's Inequality:

- $\mathbb{P}\left(|A'| \leq |\tilde{A}|/2\right) = \mathbb{P}\left(|\bar{A}'| \geq |\tilde{A}|/2\right) \leq \mathbb{P}\left(|\bar{A}'| \geq 2\mathbb{E}(|\bar{A}'|)\right) \leq 1/2.$

\Rightarrow with positive probability, $|A'| \geq \frac{1}{2}|\tilde{A}| \geq \frac{1}{4}|B| \geq \frac{\Gamma}{32d} |B'|.$



$$\Gamma/2 \leq d(a) \leq 2\Gamma,$$

$$|\tilde{A}| \geq |B|/2$$

$$d \leq d(a) \leq 16d,$$

$$|A'| \geq \frac{\Gamma}{32d} |B'|$$

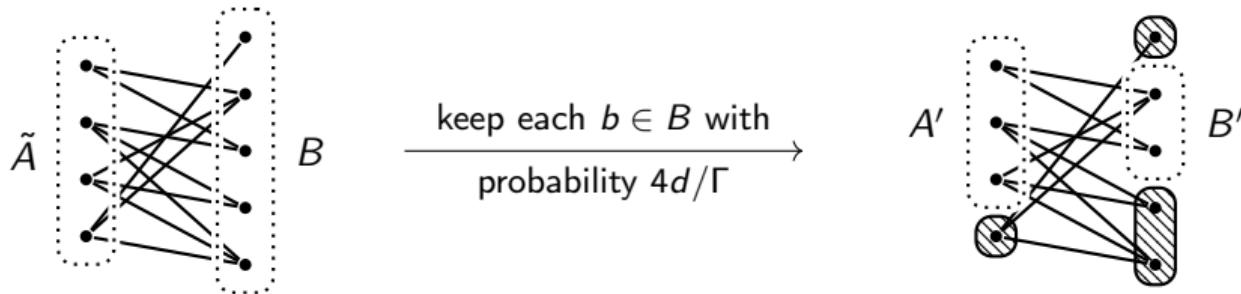
By Chernoff's Bound:

- $\mathbb{P}\left(|B'| \geq \frac{8d}{\Gamma} |B|\right) = \mathbb{P}\left(|B'| \geq 2\mathbb{E}(|B'|)\right) \leq e^{-8d/3} \leq 1/4.$
- $\mathbb{P}(a \notin A') = \mathbb{P}(X_a < d) + \mathbb{P}(X_a > 16d) \leq \mathbb{P}\left(X_a < \frac{1}{2}\mathbb{E}(X_a)\right) + \mathbb{P}\left(X_a > 2\mathbb{E}(X_a)\right) \leq 1/4.$

By Markov's Inequality:

- $\mathbb{P}\left(|A'| \leq |\tilde{A}|/2\right) = \mathbb{P}\left(|\bar{A}'| \geq |\tilde{A}|/2\right) \leq \mathbb{P}\left(|\bar{A}'| \geq 2\mathbb{E}(|\bar{A}'|)\right) \leq 1/2.$

\Rightarrow with positive probability, $|A'| \geq \frac{1}{2}|\tilde{A}| \geq \frac{1}{4}|B| \geq \frac{\Gamma}{32d}|B'|.$



$$\Gamma/2 \leq d(a) \leq 2\Gamma, \\ |\tilde{A}| \geq |B|/2$$

$$d \leq d(a) \leq 16d, \\ |A'| \geq \frac{\Gamma}{32d} |B'|$$

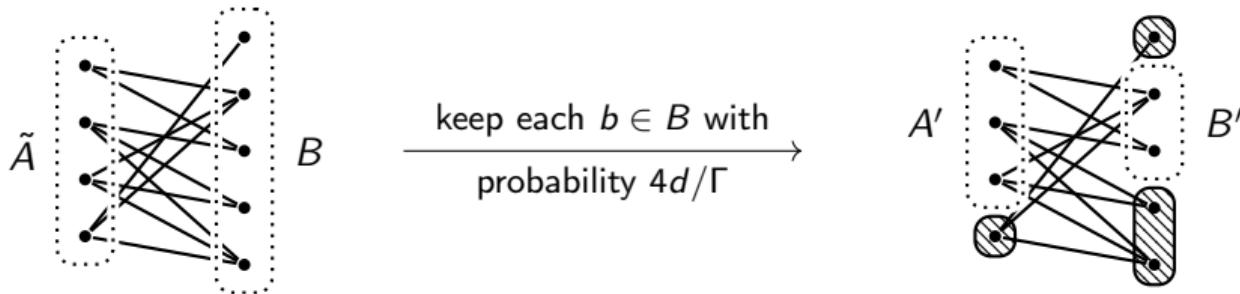
By Chernoff's Bound:

- $\mathbb{P}\left(|B'| \geq \frac{8d}{\Gamma} |B|\right) = \mathbb{P}\left(|B'| \geq 2\mathbb{E}(|B'|)\right) \leq e^{-8d/3} \leq 1/4.$
- $\mathbb{P}(a \notin A') = \mathbb{P}(X_a < d) + \mathbb{P}(X_a > 16d) \leq \mathbb{P}\left(X_a < \frac{1}{2}\mathbb{E}(X_a)\right) + \mathbb{P}\left(X_a > 2\mathbb{E}(X_a)\right) \leq 1/4.$

By Markov's Inequality:

- $\mathbb{P}\left(|A'| \leq |\tilde{A}|/2\right) = \mathbb{P}\left(|\bar{A}'| \geq |\tilde{A}|/2\right) \leq \mathbb{P}\left(|\bar{A}'| \geq 2\mathbb{E}(|\bar{A}'|)\right) \leq 1/2.$

\Rightarrow with positive probability, $|A'| \geq \frac{1}{2}|\tilde{A}| \geq \frac{1}{4}|B| \geq \frac{\Gamma}{32d}|B'|.$



$$\Gamma/2 \leq d(a) \leq 2\Gamma, \\ |\tilde{A}| \geq |B|/2$$

$$d \leq d(a) \leq 16d, \\ |A'| \geq \frac{\Gamma}{32d} |B'|$$

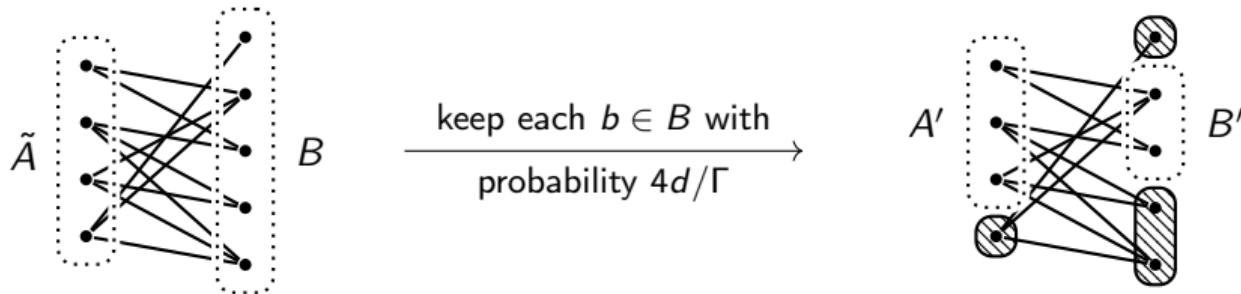
By Chernoff's Bound:

- $\mathbb{P}\left(|B'| \geq \frac{8d}{\Gamma} |B|\right) = \mathbb{P}\left(|B'| \geq 2\mathbb{E}(|B'|)\right) \leq e^{-8d/3} \leq 1/4.$
- $\mathbb{P}(a \notin A') = \mathbb{P}(X_a < d) + \mathbb{P}(X_a > 16d) \leq \mathbb{P}\left(X_a < \frac{1}{2}\mathbb{E}(X_a)\right) + \mathbb{P}\left(X_a > 2\mathbb{E}(X_a)\right) \leq 1/4.$

By Markov's Inequality:

- $\mathbb{P}\left(|A'| \leq |\tilde{A}|/2\right) = \mathbb{P}\left(|\bar{A}'| \geq |\tilde{A}|/2\right) \leq \mathbb{P}\left(|\bar{A}'| \geq 2\mathbb{E}(|\bar{A}'|)\right) \leq 1/2.$

\Rightarrow with positive probability, $|A'| \geq \frac{1}{2}|\tilde{A}| \geq \frac{1}{4}|B| \geq \frac{\Gamma}{32d}|B'|.$



$$\Gamma/2 \leq d(a) \leq 2\Gamma, \\ |\tilde{A}| \geq |B|/2$$

$$d \leq d(a) \leq 16d, \\ |A'| \geq \frac{\Gamma}{32d} |B'|$$

By Chernoff's Bound:

- $\mathbb{P}\left(|B'| \geq \frac{8d}{\Gamma} |B|\right) = \mathbb{P}\left(|B'| \geq 2\mathbb{E}(|B'|)\right) \leq e^{-8d/3} \leq 1/4.$
- $\mathbb{P}(a \notin A') = \mathbb{P}(X_a < d) + \mathbb{P}(X_a > 16d) \leq \mathbb{P}\left(X_a < \frac{1}{2}\mathbb{E}(X_a)\right) + \mathbb{P}\left(X_a > 2\mathbb{E}(X_a)\right) \leq 1/4.$

By Markov's Inequality:

- $\mathbb{P}\left(|A'| \leq |\tilde{A}|/2\right) = \mathbb{P}\left(|\bar{A}'| \geq |\tilde{A}|/2\right) \leq \mathbb{P}\left(|\bar{A}'| \geq 2\mathbb{E}(|\bar{A}'|)\right) \leq 1/2.$

\implies with positive probability, $|A'| \geq \frac{1}{2}|\tilde{A}| \geq \frac{1}{4}|B| \geq \frac{\Gamma}{32d} |B'|.$

Proof (3/3): Edge-coloured unbalanced bipartite graphs

Lemma

Let $G = (A \cup B, E)$ be a 2-edge-coloured bipartite graph with

- ① $|A| \geq 2^{64d+1} \cdot |B|$ and
- ② $4d \leq d(a) \leq 64d$ for every $a \in A$.

Then G contains **monochromatic induced subgraph H** with $\delta(H) \geq d$.

Proof: By symmetry, we assume that half of the vertices $a \in A$ satisfy $d_{\text{blue}}(a) \geq d_{\text{red}}(a)$.

Proof (3/3): Edge-coloured unbalanced bipartite graphs

Lemma

Let $G = (A \cup B, E)$ be a 2-edge-coloured bipartite graph with

- ① $|A| \geq 2^{64d+1} \cdot |B|$ and
- ② $4d \leq d(a) \leq 64d$ for every $a \in A$.

Then G contains **monochromatic induced subgraph H** with $\delta(H) \geq d$.

Proof: By symmetry, we assume that half of the vertices $a \in A$ satisfy $d_{\text{blue}}(a) \geq d_{\text{red}}(a)$.

Proof (3/3): Edge-coloured unbalanced bipartite graphs

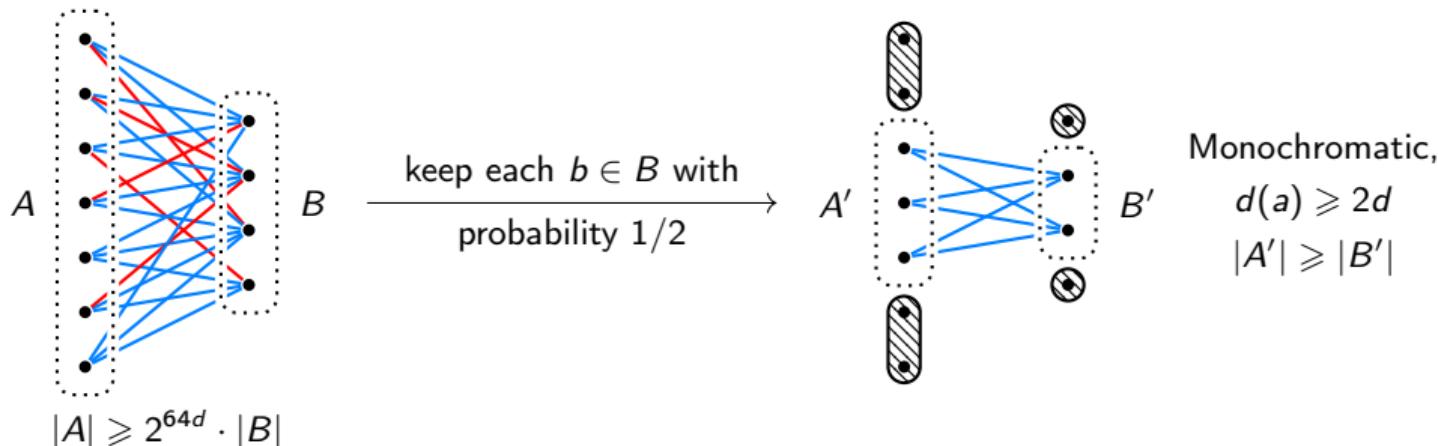
Lemma

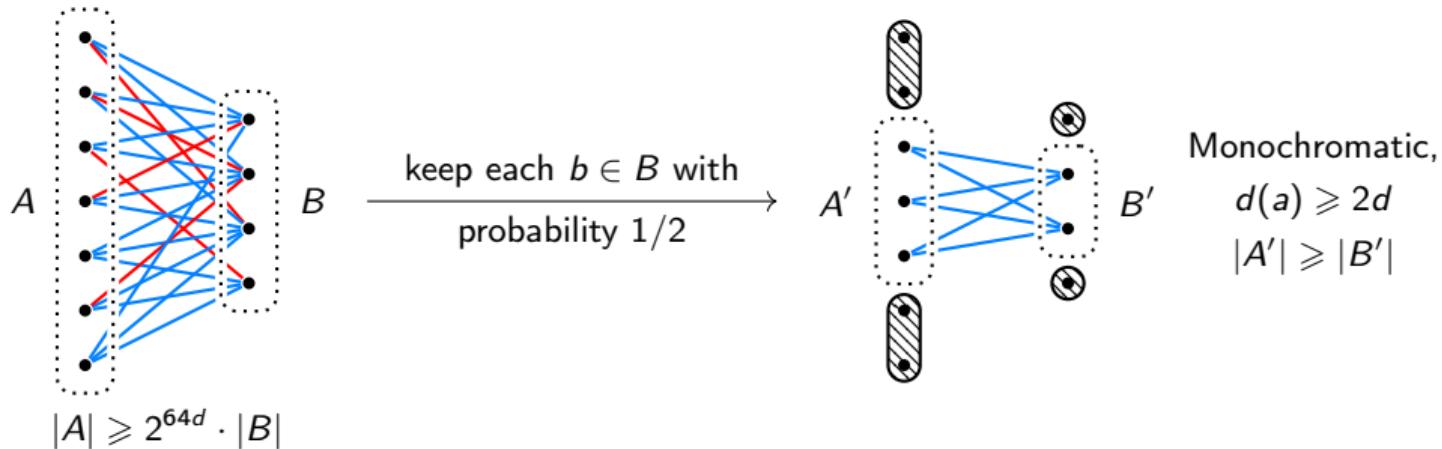
Let $G = (A \cup B, E)$ be a 2-edge-coloured bipartite graph with

- ① $|A| \geq 2^{64d+1} \cdot |B|$ and
- ② $4d \leq d(a) \leq 64d$ for every $a \in A$.

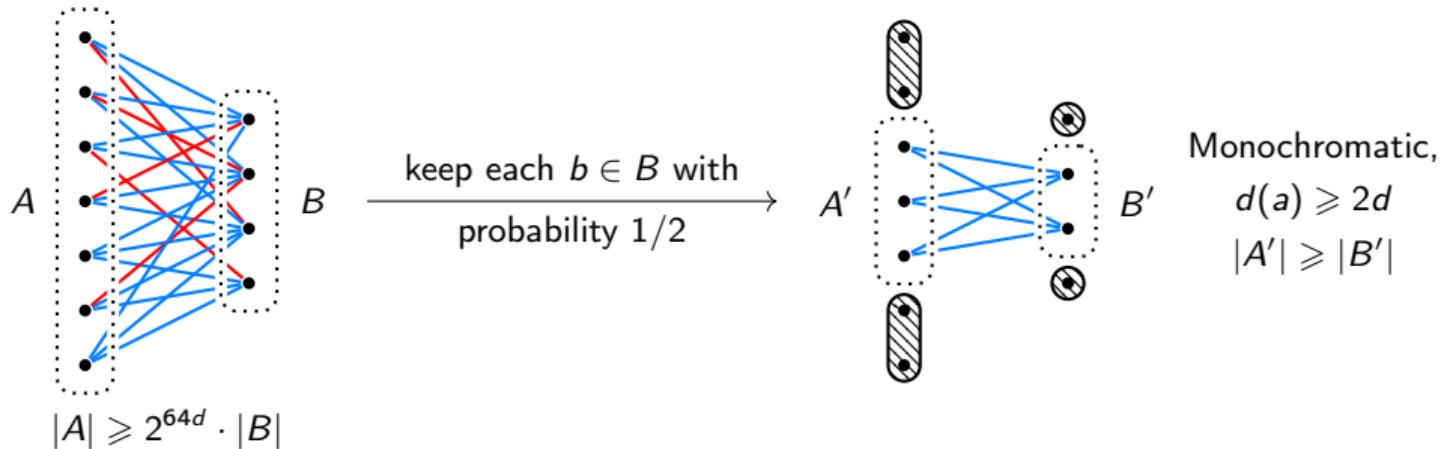
Then G contains **monochromatic induced subgraph H** with $\delta(H) \geq d$.

Proof: By symmetry, we assume that half of the vertices $a \in A$ satisfy $d_{\text{blue}}(a) \geq d_{\text{red}}(a)$.



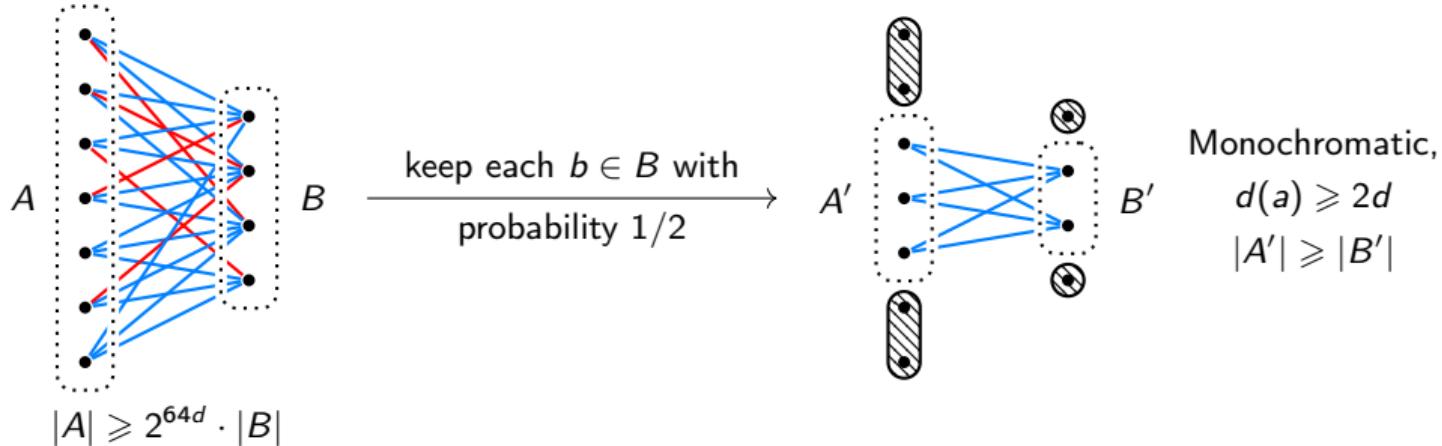


- $\mathbb{P}(a \in A') \geq (\frac{1}{2})^{d(a)} \geq 2^{-64d}.$
- $\mathbb{E}(|A'|) \geq 2^{-64d} \cdot |A| \geq |B| \geq |B'|$, hence $|A'| \geq |B'|$ with positive probability.
- $G[A' \cup B']$ has average degree $\geq 2d$ and there is $H \subseteq_{\text{ind}} G[A' \cup B']$ with $\delta(H) \geq d$. □



- $\mathbb{P}(a \in A') \geq (\frac{1}{2})^{d(a)} \geq 2^{-64d}.$
- $\mathbb{E}(|A'|) \geq 2^{-64d} \cdot |A| \geq |B| \geq |B'|$, hence $|A'| \geq |B'|$ with positive probability.
- $G[A' \cup B']$ has average degree $\geq 2d$ and there is $H \subseteq_{\text{ind}} G[A' \cup B']$ with $\delta(H) \geq d$.

□



- $\mathbb{P}(a \in A') \geq (\frac{1}{2})^{d(a)} \geq 2^{-64d}.$
- $\mathbb{E}(|A'|) \geq 2^{-64d} \cdot |A| \geq |B| \geq |B'|$, hence $|A'| \geq |B'|$ with positive probability.
- $G[A' \cup B']$ has average degree $\geq 2d$ and there is $H \subseteq_{\text{ind}} G[A' \cup B']$ with $\delta(H) \geq d$.

□

Degree- and χ -boundedness

Definition (χ -boundedness)

A hereditary class of graphs \mathcal{G} is **(polynomially) χ -bounded** if there is (polynomial) function f such that

$$\chi(G) \leq f(\omega(G))$$

for every $G \in \mathcal{G}$.

Definition (Degree-boundedness)

A hereditary class of graphs \mathcal{G} is **(polynomially) degree-bounded** if there is (polynomial) function f such that

$$\delta(G) \leq f(\tau(G))$$

for every $G \in \mathcal{G}$, where $\tau(G)$ is the largest t such that $K_{t,t} \subseteq G$.

Degree- and χ -boundedness

Definition (χ -boundedness)

A hereditary class of graphs \mathcal{G} is **(polynomially) χ -bounded** if there is (polynomial) function f such that

$$\chi(G) \leq f(\omega(G))$$

for every $G \in \mathcal{G}$.

Definition (Degree-boundedness)

A hereditary class of graphs \mathcal{G} is **(polynomially) degree-bounded** if there is (polynomial) function f such that

$$\delta(G) \leq f(\tau(G))$$

for every $G \in \mathcal{G}$, where $\tau(G)$ is the largest t such that $K_{t,t} \subseteq G$.

Theorem (Briański, Davies, Walczak, 2024)

There exist hereditary χ -bounded classes of graphs that are χ -bounded but not polynomially χ -bounded.

Theorem (Girão and Hunter, 2025)

Every degree-bounded hereditary class of graphs is polynomially degree-bounded.

Corollary

If \mathcal{G} is a degree-bounded hereditary class of graphs and $K_{s,s} \notin \mathcal{G}$ then \mathcal{G} is polynomially χ -bounded.

Proof: For every graph $G \in \mathcal{G}$,

$$\delta(G) \underset{\text{GH}}{\leqslant} \tau(G)^{O(1)} < R(s, \omega(G) + 1)^{O(1)} \underset{\text{ES}}{\leqslant} (\omega(G) + s)^{O(s)}.$$

Theorem (Briański, Davies, Walczak, 2024)

There exist hereditary χ -bounded classes of graphs that are χ -bounded but not polynomially χ -bounded.

Theorem (Girão and Hunter, 2025)

Every degree-bounded hereditary class of graphs is polynomially degree-bounded.

Corollary

If \mathcal{G} is a degree-bounded hereditary class of graphs and $K_{s,s} \notin \mathcal{G}$ then \mathcal{G} is polynomially χ -bounded.

Proof: For every graph $G \in \mathcal{G}$,

$$\delta(G) \underset{\text{GH}}{\leqslant} \tau(G)^{O(1)} < R(s, \omega(G) + 1)^{O(1)} \underset{\text{ES}}{\leqslant} (\omega(G) + s)^{O(s)}.$$

Theorem (Briański, Davies, Walczak, 2024)

There exist hereditary χ -bounded classes of graphs that are χ -bounded but not polynomially χ -bounded.

Theorem (Girão and Hunter, 2025)

Every degree-bounded hereditary class of graphs is polynomially degree-bounded.

Corollary

If \mathcal{G} is a degree-bounded hereditary class of graphs and $K_{s,s} \notin \mathcal{G}$ then \mathcal{G} is polynomially χ -bounded.

Proof: For every graph $G \in \mathcal{G}$,

$$\delta(G) \underset{\text{GH}}{\leqslant} \tau(G)^{O(1)} < R(s, \omega(G) + 1)^{O(1)} \underset{\text{ES}}{\leqslant} (\omega(G) + s)^{O(s)}.$$

Theorem (Briański, Davies, Walczak, 2024)

There exist hereditary χ -bounded classes of graphs that are χ -bounded but not polynomially χ -bounded.

Theorem (Girão and Hunter, 2025)

Every degree-bounded hereditary class of graphs is polynomially degree-bounded.

Corollary

If \mathcal{G} is a degree-bounded hereditary class of graphs and $K_{s,s} \notin \mathcal{G}$ then \mathcal{G} is polynomially χ -bounded.

Proof: For every graph $G \in \mathcal{G}$,

$$\delta(G) \underset{\text{GH}}{\leqslant} \tau(G)^{O(1)} < R(s, \omega(G) + 1)^{O(1)} \underset{\text{ES}}{\leqslant} (\omega(G) + s)^{O(s)}.$$

Application 1: building larger degree-bounded classes of graphs

Definition

Given a class \mathcal{G} and $k \in \mathbb{N}$, \mathcal{G}_k is the class of graphs admitting a k -edge-colouring such that every **monochromatic induced** subgraph belongs to \mathcal{G} .

Example: a member of \mathcal{F}_2 , where \mathcal{F} is the class of forests.

Corollary

If \mathcal{G} is a *degree-bounded* hereditary class then, for every k , \mathcal{G}_k is *degree-bounded*.

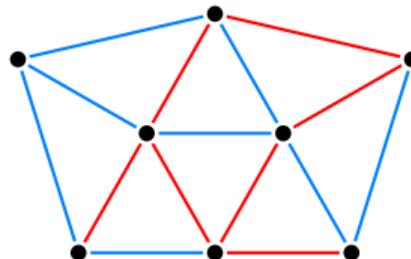
Proof: If $G \in \mathcal{G}_k$ and $\delta(G) \geq f_{\text{monoc.}}(f_{\mathcal{G}}(k))$ then G contains a monochromatic induced subgraph H with $\delta(H) \geq f_{\mathcal{G}}(k)$ and $\tau(G) \geq \tau(H) \geq k$.

Application 1: building larger degree-bounded classes of graphs

Definition

Given a class \mathcal{G} and $k \in \mathbb{N}$, \mathcal{G}_k is the class of graphs admitting a k -edge-colouring such that every **monochromatic induced** subgraph belongs to \mathcal{G} .

Example: a member of \mathcal{F}_2 , where \mathcal{F} is the class of forests.



Corollary

If \mathcal{G} is a *degree-bounded* hereditary class then, for every k , \mathcal{G}_k is *degree-bounded*.

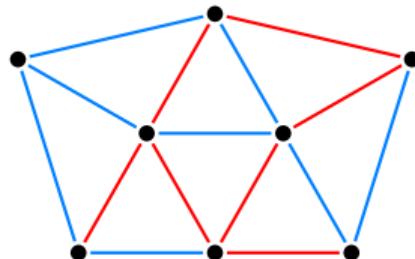
Proof: If $G \in \mathcal{G}_k$ and $\delta(G) \geq f_{\text{monoc.}}(f_{\mathcal{G}}(k))$ then G contains a monochromatic induced subgraph H with $\delta(H) \geq f_{\mathcal{G}}(k)$ and $\tau(G) \geq \tau(H) \geq k$.

Application 1: building larger degree-bounded classes of graphs

Definition

Given a class \mathcal{G} and $k \in \mathbb{N}$, \mathcal{G}_k is the class of graphs admitting a k -edge-colouring such that every **monochromatic induced** subgraph belongs to \mathcal{G} .

Example: a member of \mathcal{F}_2 , where \mathcal{F} is the class of forests.



Corollary

If \mathcal{G} is a **degree-bounded** hereditary class then, for every k , \mathcal{G}_k is **degree-bounded**.

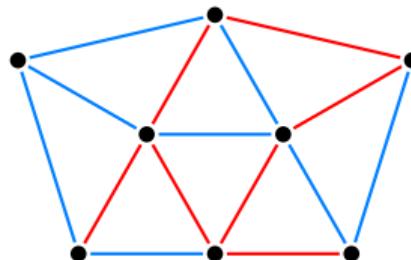
Proof: If $G \in \mathcal{G}_k$ and $\delta(G) \geq f_{\text{monoc.}}(f_{\mathcal{G}}(k))$ then G contains a monochromatic induced subgraph H with $\delta(H) \geq f_{\mathcal{G}}(k)$ and $\tau(G) \geq \tau(H) \geq k$.

Application 1: building larger degree-bounded classes of graphs

Definition

Given a class \mathcal{G} and $k \in \mathbb{N}$, \mathcal{G}_k is the class of graphs admitting a k -edge-colouring such that every **monochromatic induced** subgraph belongs to \mathcal{G} .

Example: a member of \mathcal{F}_2 , where \mathcal{F} is the class of forests.



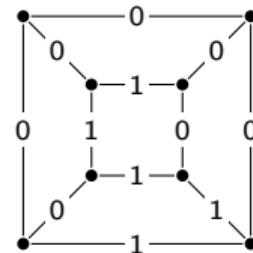
Corollary

If \mathcal{G} is a **degree-bounded** hereditary class then, for every k , \mathcal{G}_k is **degree-bounded**.

Proof: If $G \in \mathcal{G}_k$ and $\delta(G) \geq f_{\text{monoc.}}(f_{\mathcal{G}}(k))$ then G contains a monochromatic induced subgraph H with $\delta(H) \geq f_{\mathcal{G}}(k)$ and $\tau(G) \geq \tau(H) \geq k$.

An example: odd-signable graphs

A graph is **odd signable** if its edges can be assigned $\{0, 1\}$ such that every induced cycle has an odd assignment.



Theorem (Chudnovsky and Seymour, 2023)

The class \mathcal{EH} of even-hole-free graphs is degree-bounded and linearly χ -bounded.

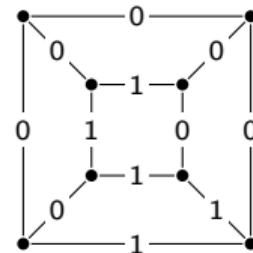
Corollary

The class \mathcal{OS} of odd-signable graphs is degree-bounded and polynomially χ -bounded.

Proof: We have $\mathcal{OS} \subseteq \mathcal{EH}_2$, hence \mathcal{OS} is degree-bounded. Since $K_{2,3} \notin \mathcal{OS}$, it is polynomially χ -bounded.

An example: odd-signable graphs

A graph is **odd signable** if its edges can be assigned $\{0, 1\}$ such that every induced cycle has an odd assignment.



Theorem (Chudnovsky and Seymour, 2023)

*The class \mathcal{EH} of even-hole-free graphs is **degree-bounded** and **linearly χ -bounded**.*

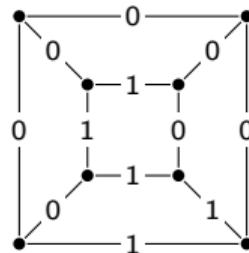
Corollary

*The class \mathcal{OS} of odd-signable graphs is **degree-bounded** and **polynomially χ -bounded**.*

Proof: We have $\mathcal{OS} \subseteq \mathcal{EH}_2$, hence \mathcal{OS} is degree-bounded. Since $K_{2,3} \notin \mathcal{OS}$, it is polynomially χ -bounded.

An example: odd-signable graphs

A graph is **odd signable** if its edges can be assigned $\{0, 1\}$ such that every induced cycle has an odd assignment.



Theorem (Chudnovsky and Seymour, 2023)

*The class \mathcal{EH} of even-hole-free graphs is **degree-bounded** and **linearly χ -bounded**.*

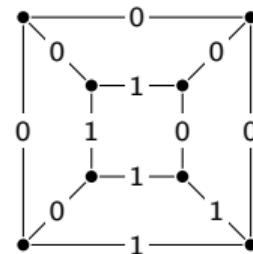
Corollary

*The class \mathcal{OS} of odd-signable graphs is **degree-bounded** and **polynomially χ -bounded**.*

Proof: We have $\mathcal{OS} \subseteq \mathcal{EH}_2$, hence \mathcal{OS} is degree-bounded. Since $K_{2,3} \notin \mathcal{OS}$, it is polynomially χ -bounded.

An example: odd-signable graphs

A graph is **odd signable** if its edges can be assigned $\{0, 1\}$ such that every induced cycle has an odd assignment.



Theorem (Chudnovsky and Seymour, 2023)

The class \mathcal{EH} of even-hole-free graphs is **degree-bounded** and **linearly χ -bounded**.

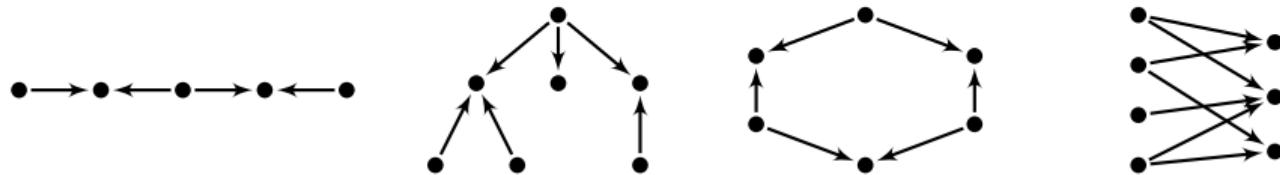
Corollary

The class \mathcal{OS} of odd-signable graphs is **degree-bounded** and **polynomially χ -bounded**.

Proof: We have $\mathcal{OS} \subseteq \mathcal{EH}_2$, hence \mathcal{OS} is **degree-bounded**. Since $K_{2,3} \notin \mathcal{OS}$, it is **polynomially χ -bounded**.

A few definitions for digraphs

An **antidirected** graph is an oriented graph in which every vertex is a **source** or a **sink**.



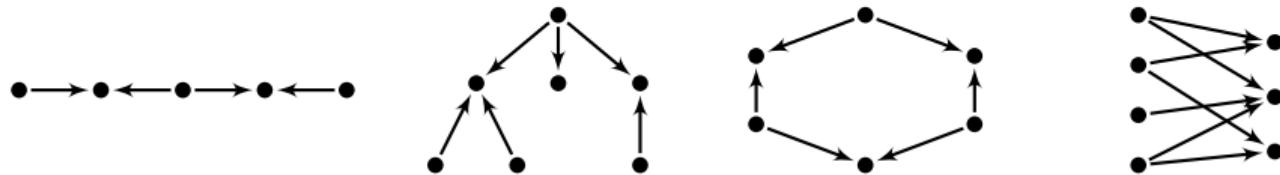
The **Transitive Tournament** on k vertices TT_k :

Theorem (Erdős and Moser, 1963)

Every tournament of order 2^k contains TT_k .

A few definitions for digraphs

An **antidirected** graph is an oriented graph in which every vertex is a **source** or a **sink**.



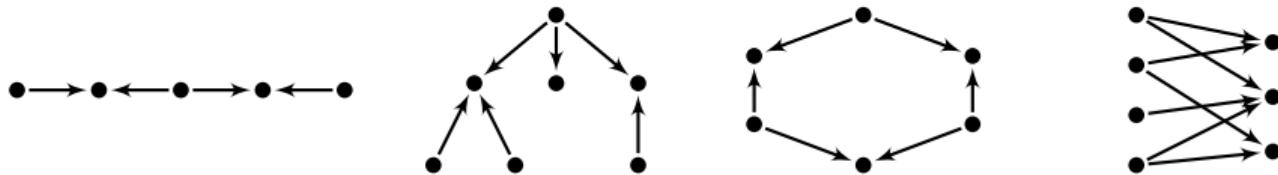
The **Transitive Tournament** on k vertices TT_k :

Theorem (Erdős and Moser, 1963)

Every tournament of order 2^k contains TT_k .

A few definitions for digraphs

An **antidirected** graph is an oriented graph in which every vertex is a **source** or a **sink**.



The **Transitive Tournament** on k vertices TT_k :



Theorem (Erdős and Moser, 1963)

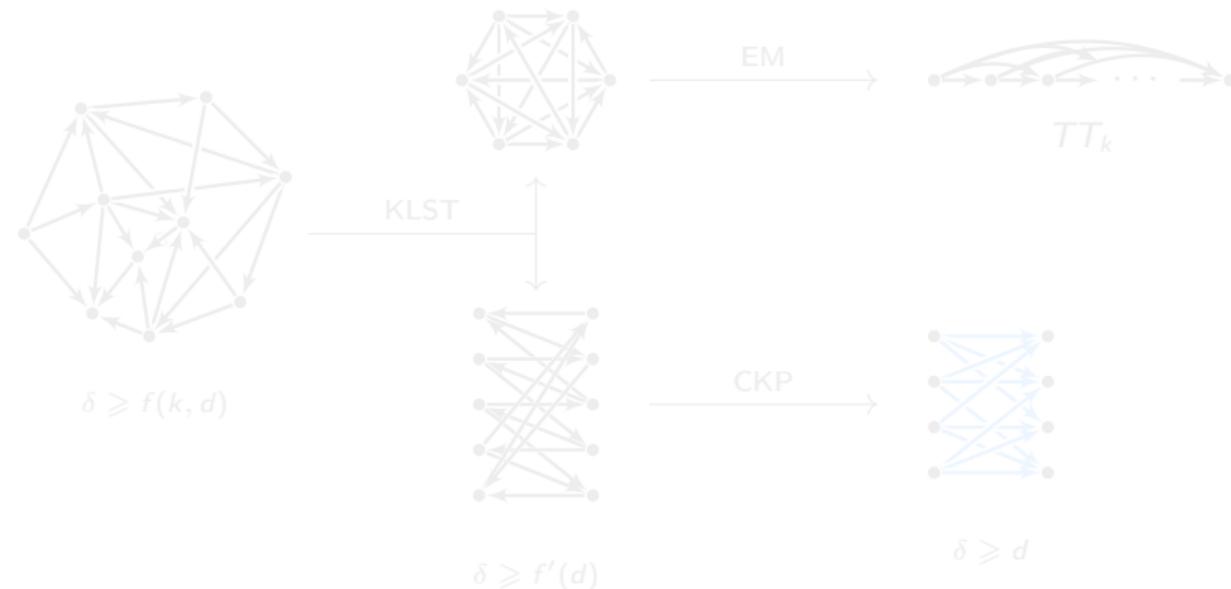
Every tournament of order 2^k contains TT_k .

Substructures of oriented graphs with large minimum degree

Corollary

Let G be a graph with $\delta(G) \geq f(k, d)$, then every orientation of G contains TT_k or an **induced antidirected subgraph** H with $\delta(H) \geq d$.

Proof:

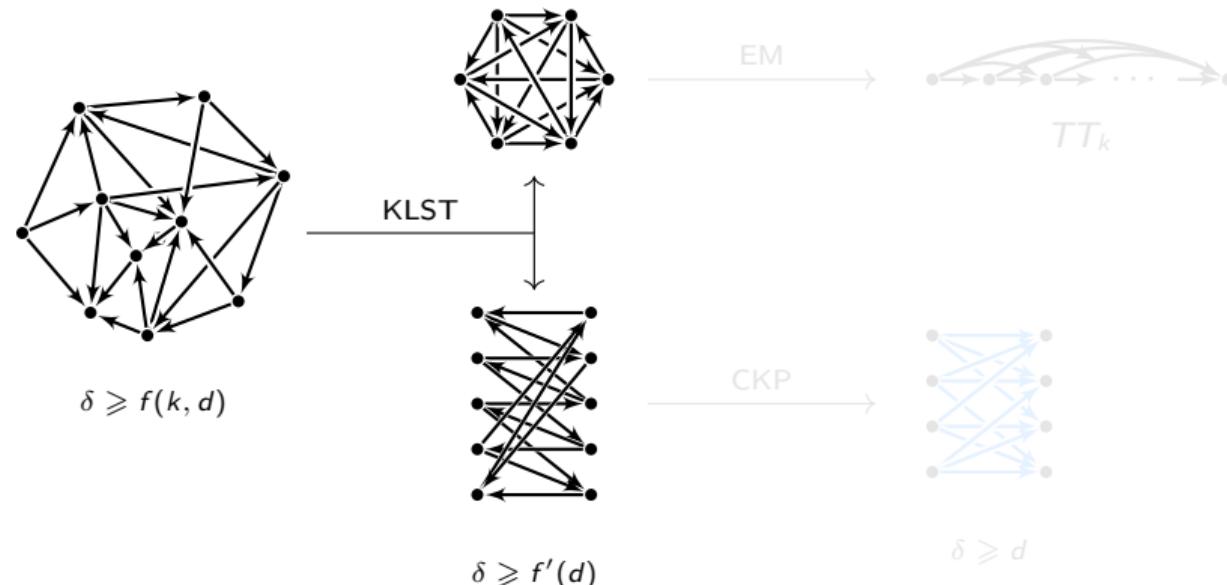


Substructures of oriented graphs with large minimum degree

Corollary

Let G be a graph with $\delta(G) \geq f(k, d)$, then every orientation of G contains TT_k or an **induced antidiirected subgraph** H with $\delta(H) \geq d$.

Proof:

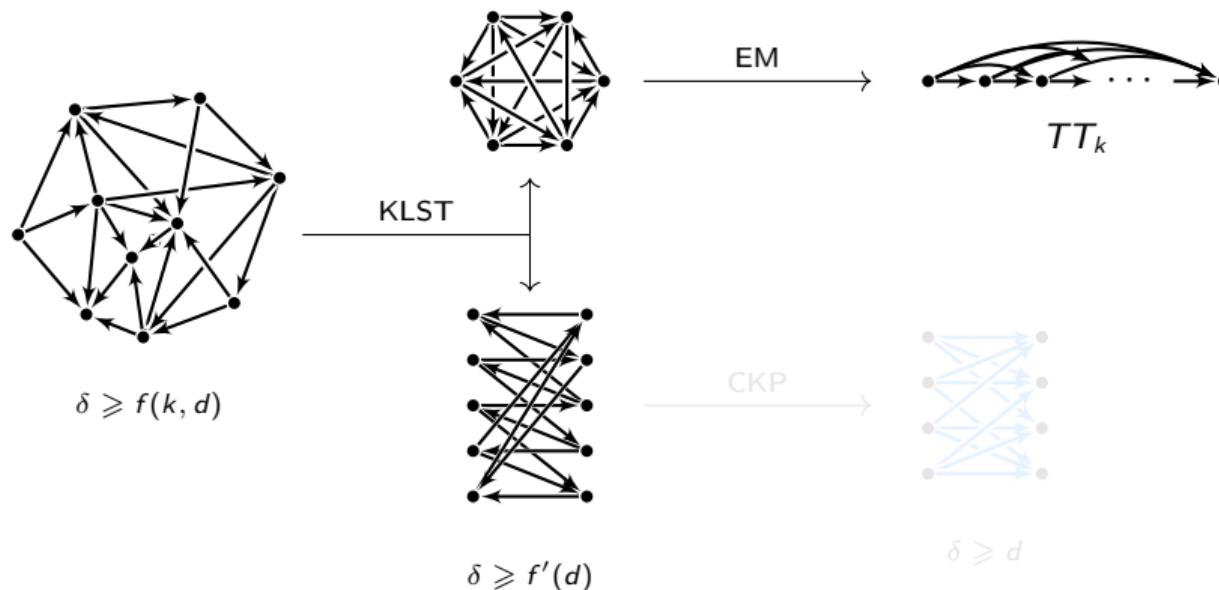


Substructures of oriented graphs with large minimum degree

Corollary

Let G be a graph with $\delta(G) \geq f(k, d)$, then every orientation of G contains TT_k or an **induced antidirected subgraph H** with $\delta(H) \geq d$.

Proof:

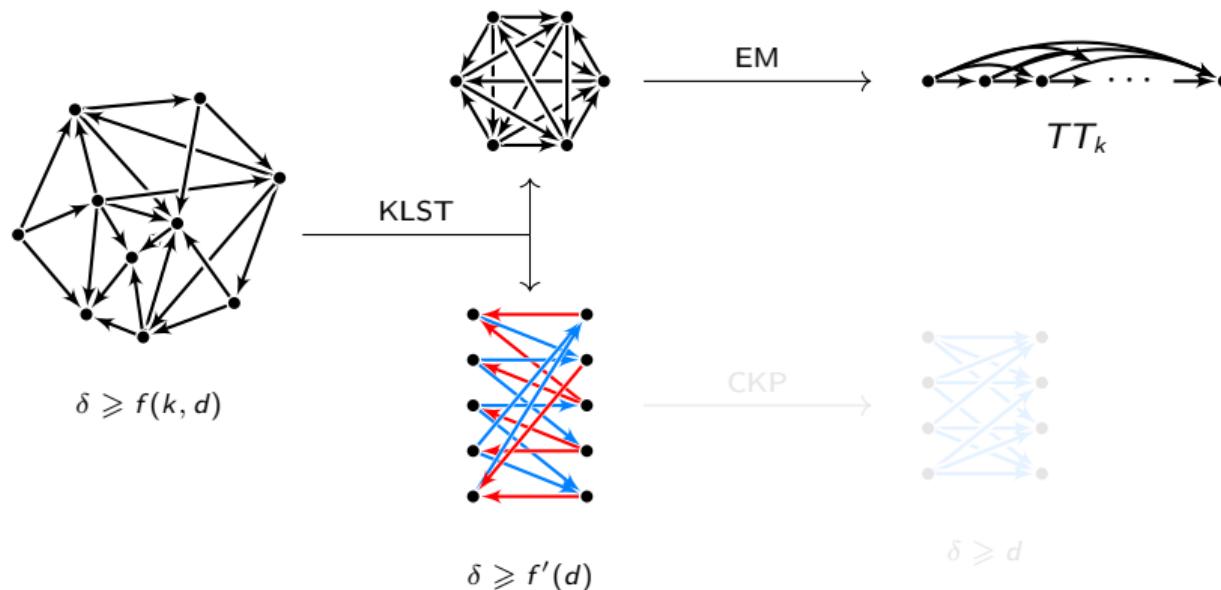


Substructures of oriented graphs with large minimum degree

Corollary

Let G be a graph with $\delta(G) \geq f(k, d)$, then every orientation of G contains TT_k or an **induced antidirected subgraph H** with $\delta(H) \geq d$.

Proof:

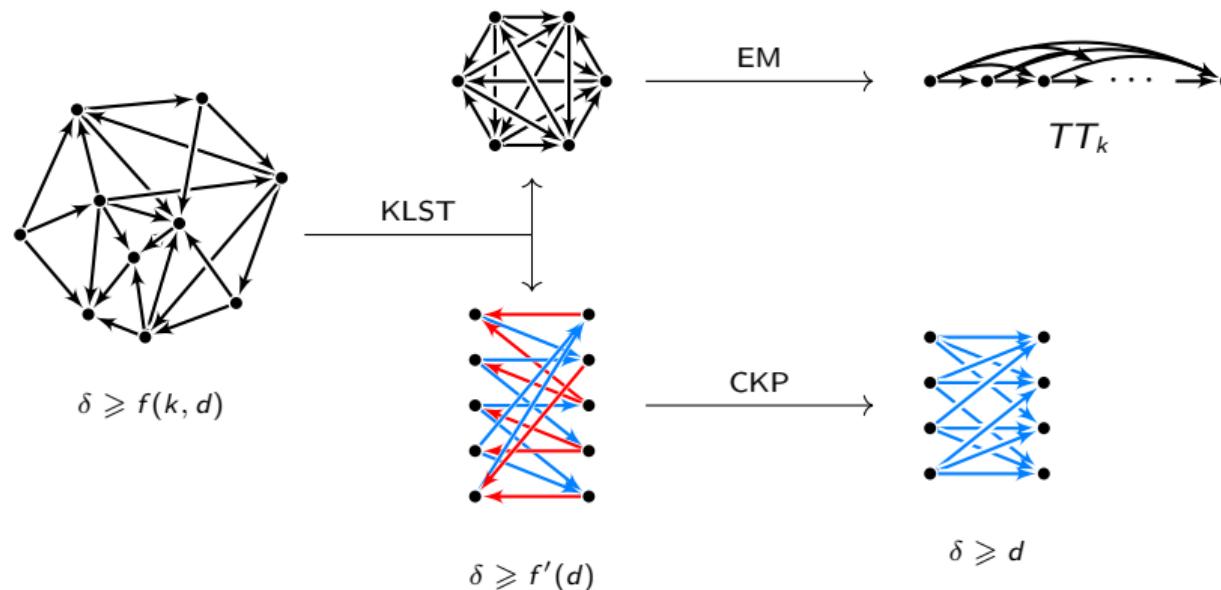


Substructures of oriented graphs with large minimum degree

Corollary

Let G be a graph with $\delta(G) \geq f(k, d)$, then every orientation of G contains TT_k or an **induced antidirected subgraph H** with $\delta(H) \geq d$.

Proof:



Application 2: an analogue of Gyárfás-Sumner

Conjecture (Gyárfás, 1975; Sumner, 1981)

The class of F -free graphs is χ -bounded if and only if F is a forest.

Theorem (Kierstead and Penrice, 1994)

The class of F -free graphs is degree-bounded if and only if F is a forest.

For an oriented graph \vec{F} , a graph G is \vec{F} -free if it has an orientation without any induced copy of \vec{F} .

Corollary

The class of \vec{F} -free graphs is degree-bounded if and only if \vec{F} is an antidirected forest.

Application 2: an analogue of Gyárfás-Sumner

Conjecture (Gyárfás, 1975; Sumner, 1981)

The class of F -free graphs is χ -bounded if and only if F is a forest.

Theorem (Kierstead and Penrice, 1994)

The class of F -free graphs is degree-bounded if and only if F is a forest.

For an oriented graph \vec{F} , a graph G is \vec{F} -free if it has an orientation without any induced copy of \vec{F} .

Corollary

The class of \vec{F} -free graphs is degree-bounded if and only if \vec{F} is an antidirected forest.

Application 2: an analogue of Gyárfás-Sumner

Conjecture (Gyárfás, 1975; Sumner, 1981)

The class of F -free graphs is χ -bounded if and only if F is a forest.

Theorem (Kierstead and Penrice, 1994)

The class of F -free graphs is degree-bounded if and only if F is a forest.

For an oriented graph \vec{F} , a graph G is \vec{F} -free if it has an orientation without any induced copy of \vec{F} .

Corollary

The class of \vec{F} -free graphs is degree-bounded if and only if \vec{F} is an antidirected forest.

Corollary

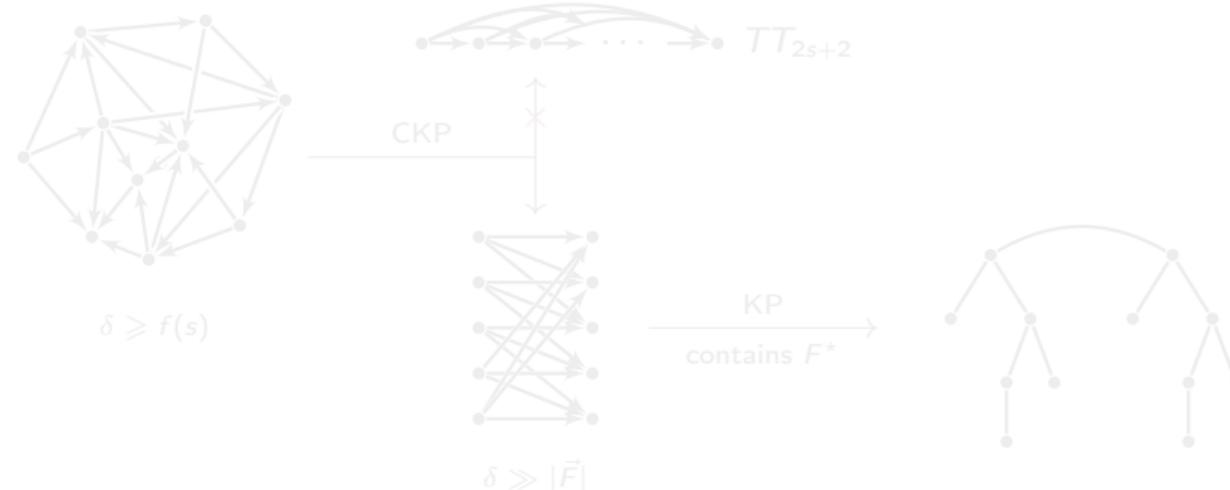
The class of \vec{F} -free graphs is **degree-bounded** if and only if \vec{F} is an **antidirected forest**.

Proof:

\implies there exist **bipartite** graphs with arbitrarily large minimum degree and girth.

\Leftarrow We can assume that \vec{F} is **connected**.

Let G with $\tau(G) \leq s$ and $\delta(G) \geq f(s)$.



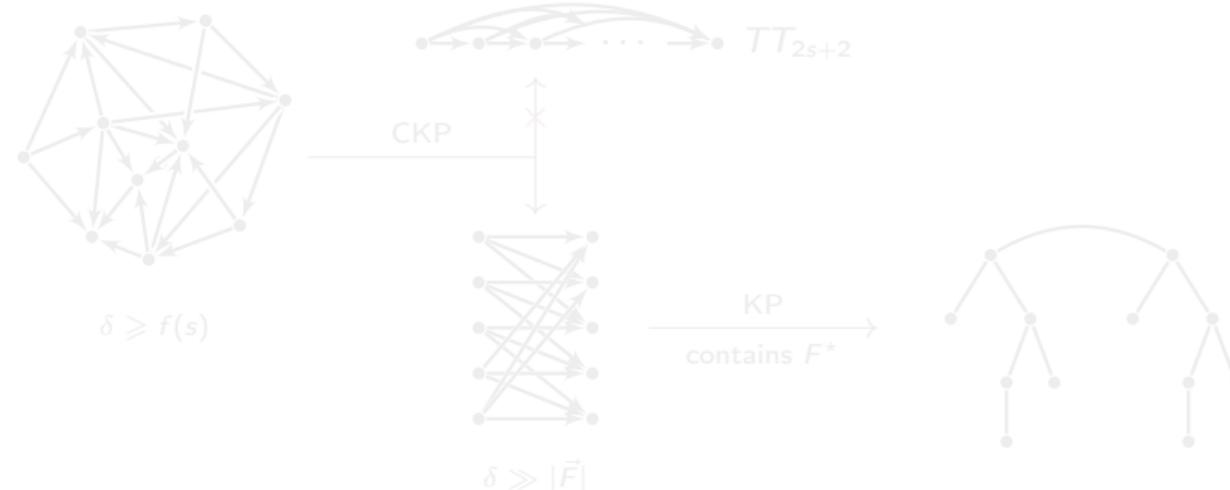
Corollary

The class of \vec{F} -free graphs is **degree-bounded** if and only if \vec{F} is an **antidirected forest**.

Proof:

\Rightarrow there exist **bipartite** graphs with arbitrarily large minimum degree and girth.
 \Leftarrow We can assume that \vec{F} is **connected**.

Let G with $\tau(G) \leq s$ and $\delta(G) \geq f(s)$.

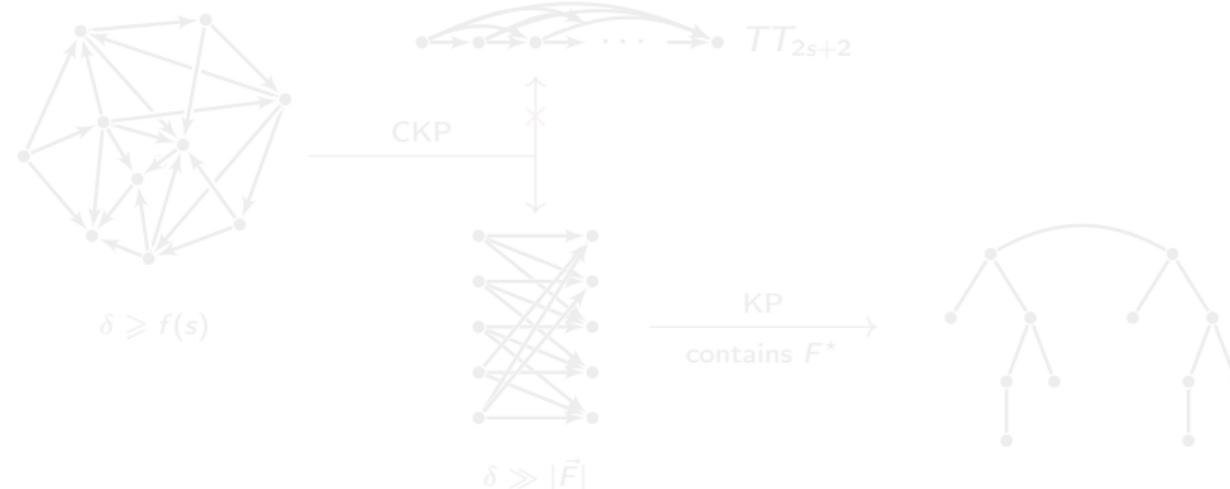


Corollary

The class of \vec{F} -free graphs is **degree-bounded** if and only if \vec{F} is an **antidirected forest**.

Proof:

\implies there exist **bipartite** graphs with arbitrarily large minimum degree and girth.
 \Leftarrow We can assume that \vec{F} is **connected**.
Let G with $\tau(G) \leq s$ and $\delta(G) \geq f(s)$.

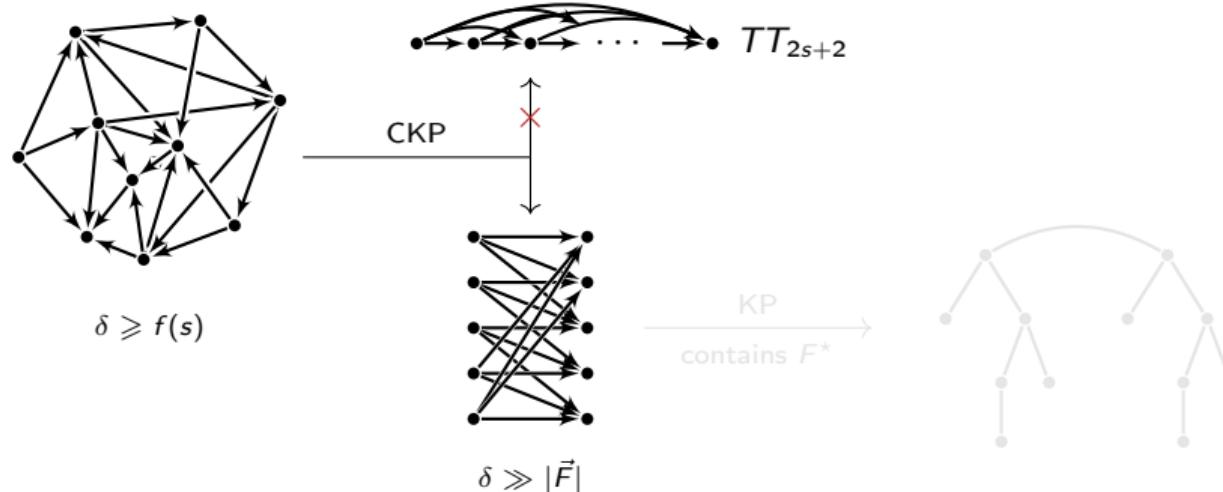


Corollary

The class of \vec{F} -free graphs is **degree-bounded** if and only if \vec{F} is an **antidirected forest**.

Proof:

\implies there exist **bipartite** graphs with arbitrarily large minimum degree and girth.
 \Leftarrow We can assume that \vec{F} is **connected**.
Let G with $\tau(G) \leq s$ and $\delta(G) \geq f(s)$.

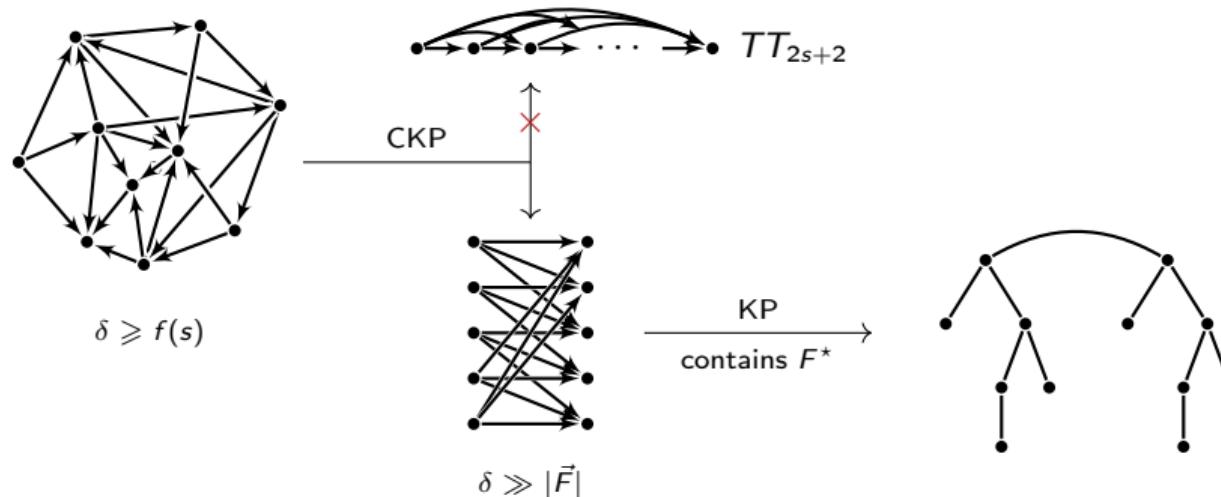


Corollary

The class of \vec{F} -free graphs is **degree-bounded** if and only if \vec{F} is an **antidirected forest**.

Proof:

\implies there exist **bipartite** graphs with arbitrarily large minimum degree and girth.
 \Leftarrow We can assume that \vec{F} is **connected**.
Let G with $\tau(G) \leq s$ and $\delta(G) \geq f(s)$.

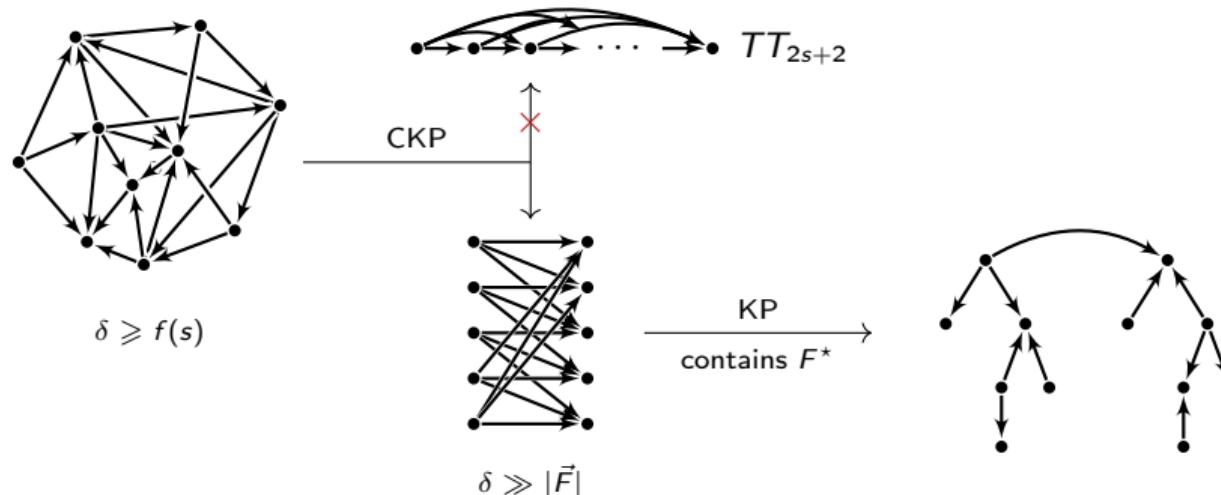


Corollary

The class of \vec{F} -free graphs is **degree-bounded** if and only if \vec{F} is an **antidirected forest**.

Proof:

\implies there exist **bipartite** graphs with arbitrarily large minimum degree and girth.
 \Leftarrow We can assume that \vec{F} is **connected**.
Let G with $\tau(G) \leq s$ and $\delta(G) \geq f(s)$.

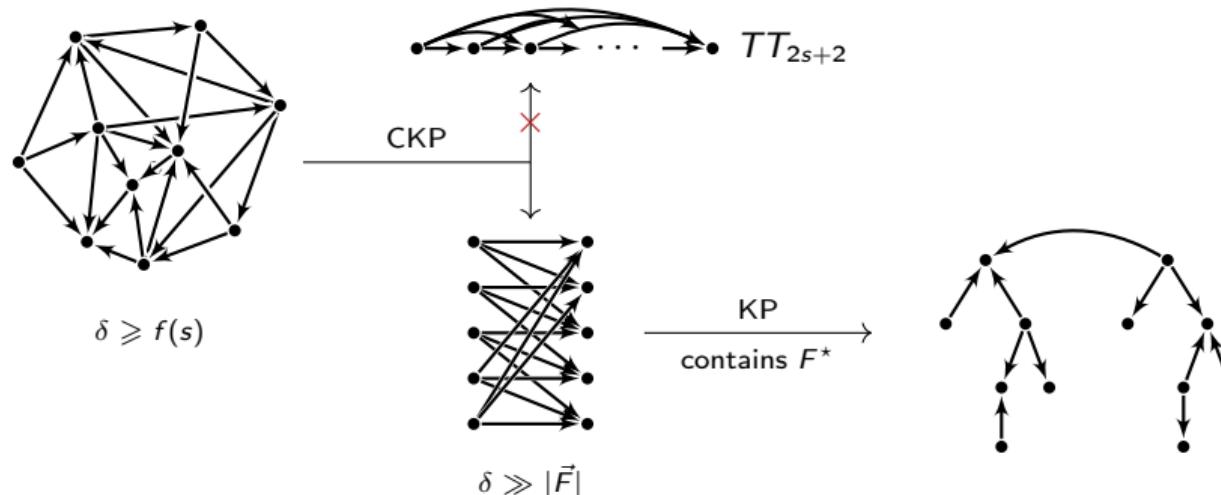


Corollary

The class of \vec{F} -free graphs is **degree-bounded** if and only if \vec{F} is an **antidirected forest**.

Proof:

\Rightarrow there exist **bipartite** graphs with arbitrarily large minimum degree and girth.
 \Leftarrow We can assume that \vec{F} is **connected**.
Let G with $\tau(G) \leq s$ and $\delta(G) \geq f(s)$.



Application 3: a directed analogue of Kühn and Osthus' Theorem

Theorem (Kühn and Osthus, 2004)

If $\delta(G) \geq f(s, t)$ then G contains $K_{s,s}$ or an **induced even subdivision** of K_t .

- $\vec{K}_{s,s}$ is the **antidirected** graph whose underlying graph is $K_{s,s}$.
- An **antidirected subdivision** of H is an antidirected graph whose underlying graph is an even subdivision of H .

Corollary

If $\delta(G) \geq f(s, t)$ then every orientation \vec{G} of G contains $\vec{K}_{s,s}$ or an **induced antidirected subdivision** of K_t .

Application 3: a directed analogue of Kühn and Osthus' Theorem

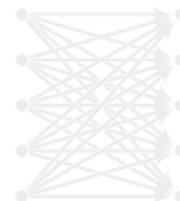
Theorem (Kühn and Osthus, 2004)

If $\delta(G) \geq f(s, t)$ then G contains $K_{s,s}$ or an **induced even subdivision** of K_t .

- $\vec{K}_{s,s}$ is the **antidirected** graph whose underlying graph is $K_{s,s}$.
- An **antidirected subdivision** of H is an antidirected graph whose underlying graph is an even subdivision of H .

Corollary

If $\delta(G) \geq f(s, t)$ then every orientation \vec{G} of G contains $\vec{K}_{s,s}$ or an **induced antidirected subdivision** of K_t .



Application 3: a directed analogue of Kühn and Osthus' Theorem

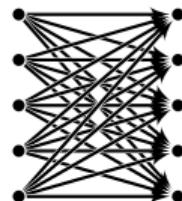
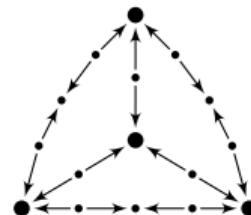
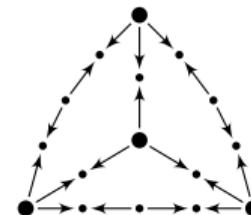
Theorem (Kühn and Osthus, 2004)

If $\delta(G) \geq f(s, t)$ then G contains $K_{s,s}$ or an **induced even subdivision** of K_t .

- $\vec{K}_{s,s}$ is the **antidirected** graph whose underlying graph is $K_{s,s}$.
- An **antidirected subdivision** of H is an antidirected graph whose underlying graph is an even subdivision of H .

Corollary

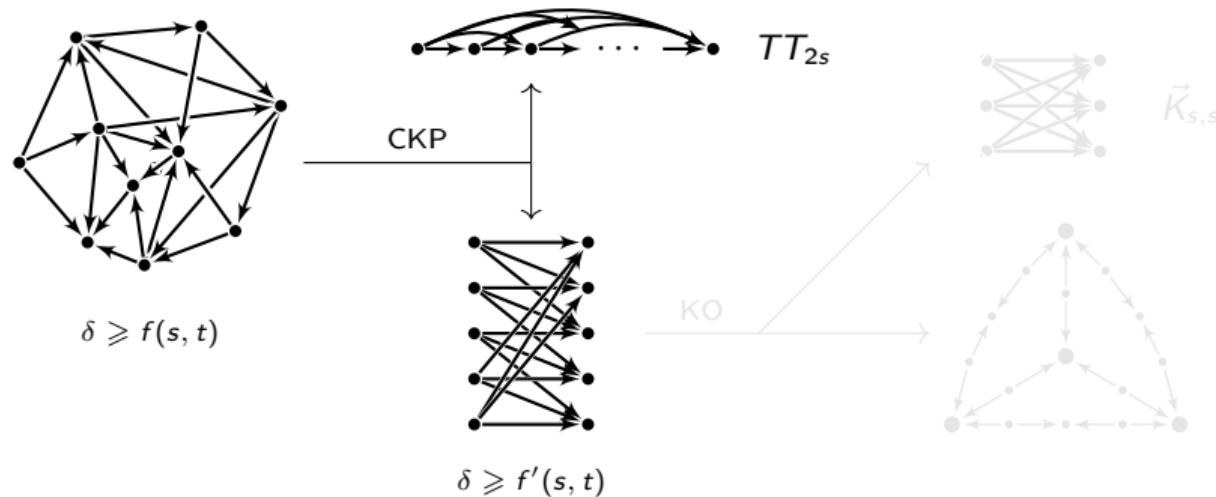
If $\delta(G) \geq f(s, t)$ then every orientation \vec{G} of G contains $\vec{K}_{s,s}$ or an **induced antidirected subdivision** of K_t .



Corollary

If $\delta(G) \geq f(s, t)$ then every orientation \vec{G} of G contains $\vec{K}_{s,s}$ or an **induced antidiirected subdivision** of K_t .

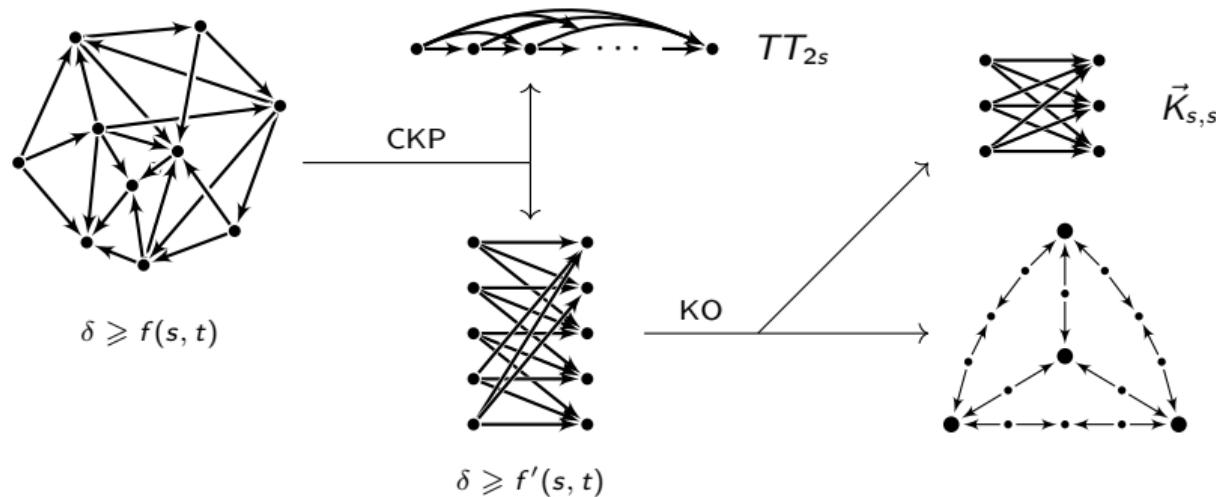
Proof:



Corollary

If $\delta(G) \geq f(s, t)$ then every orientation \vec{G} of G contains $\vec{K}_{s,s}$ or an **induced antidiirected subdivision** of K_t .

Proof:



Application 4: Antidirected cycles and Burling graphs

Let $\mathcal{AC}_{\geq \ell}$ be the class of antidirected cycles of length at least ℓ .

Corollary

For every ℓ , the class of $\mathcal{AC}_{\geq \ell}$ -free graphs is *degree-bounded*.

Proof: Every antidirected subdivision of K_ℓ contains an antidirected cycle of length $\geq 2\ell$.

Corollary

For every ℓ , the class of $(\{AC_4\} \cup \mathcal{AC}_{\geq \ell})$ -free graphs is *polynomially χ -bounded*.

Proof: It is a hereditary degree-bounded class excluding $K_{3,9}$.

Theorem (Pournajafi and Trotignon, 2024)

Burling graphs are $\mathcal{AC}_{\geq 6}$ -free.

Application 4: Antidirected cycles and Burling graphs

Let $\mathcal{AC}_{\geq \ell}$ be the class of antidirected cycles of length at least ℓ .

Corollary

For every ℓ , the class of $\mathcal{AC}_{\geq \ell}$ -free graphs is *degree-bounded*.

Proof: Every antidirected subdivision of K_ℓ contains an antidirected cycle of length $\geq 2\ell$.

Corollary

For every ℓ , the class of $(\{AC_4\} \cup \mathcal{AC}_{\geq \ell})$ -free graphs is *polynomially χ -bounded*.

Proof: It is a hereditary degree-bounded class excluding $K_{3,9}$.

Theorem (Pournajafi and Trotignon, 2024)

Burling graphs are $\mathcal{AC}_{\geq 6}$ -free.

Application 4: Antidirected cycles and Burling graphs

Let $\mathcal{AC}_{\geq \ell}$ be the class of antidirected cycles of length at least ℓ .

Corollary

For every ℓ , the class of $\mathcal{AC}_{\geq \ell}$ -free graphs is *degree-bounded*.

Proof: Every antidirected subdivision of K_ℓ contains an antidirected cycle of length $\geq 2\ell$.

Corollary

For every ℓ , the class of $(\{AC_4\} \cup \mathcal{AC}_{\geq \ell})$ -free graphs is *polynomially χ -bounded*.

Proof: It is a hereditary *degree-bounded* class excluding $K_{3,9}$.

Theorem (Pournajafi and Trotignon, 2024)

Burling graphs are $\mathcal{AC}_{\geq 6}$ -free.

Application 4: Antidirected cycles and Burling graphs

Let $\mathcal{AC}_{\geq \ell}$ be the class of antidirected cycles of length at least ℓ .

Corollary

For every ℓ , the class of $\mathcal{AC}_{\geq \ell}$ -free graphs is *degree-bounded*.

Proof: Every antidirected subdivision of K_ℓ contains an antidirected cycle of length $\geq 2\ell$.

Corollary

For every ℓ , the class of $(\{AC_4\} \cup \mathcal{AC}_{\geq \ell})$ -free graphs is *polynomially χ -bounded*.

Proof: It is a hereditary *degree-bounded* class excluding $K_{3,9}$.

Theorem (Pournajafi and Trotignon, 2024)

Burling graphs are $\mathcal{AC}_{\geq 6}$ -free.

Corollary

For every ℓ , the class of $\mathcal{AC}_{\geq \ell}$ -free graphs is degree-bounded.

Corollary

For every ℓ , the class of $(\{AC_4\} \cup \mathcal{AC}_{\geq \ell})$ -free graphs is polynomially χ -bounded.

Theorem (Pournajafi and Trotignon, 2024)

Burling graphs are $\mathcal{AC}_{\geq 6}$ -free.

Consequences:

- ➊ New proof that Burling graphs are degree-bounded.

(Original Proof: [PKKLMTW'14] and [FP'10])

- ➋ Second Corollary is tight.

Remark: Shift graphs and their induced subgraph are also $\mathcal{AC}_{\geq 6}$ -free [Gyárfás'90], and thus also form a degree-bounded class.

Corollary

For every ℓ , the class of $\mathcal{AC}_{\geq \ell}$ -free graphs is degree-bounded.

Corollary

For every ℓ , the class of $(\{\mathcal{AC}_4\} \cup \mathcal{AC}_{\geq \ell})$ -free graphs is polynomially χ -bounded.

Theorem (Pournajafi and Trotignon, 2024)

Burling graphs are $\mathcal{AC}_{\geq 6}$ -free.

Consequences:

- ① New proof that Burling graphs are degree-bounded.

(Original Proof: [PKKLMTW'14] and [FP'10])

- ② Second Corollary is tight.

Remark: Shift graphs and their induced subgraph are also $\mathcal{AC}_{\geq 6}$ -free [Gyárfás'90], and thus also form a degree-bounded class.

Corollary

For every ℓ , the class of $\mathcal{AC}_{\geq \ell}$ -free graphs is degree-bounded.

Corollary

For every ℓ , the class of $(\{\mathcal{AC}_4\} \cup \mathcal{AC}_{\geq \ell})$ -free graphs is polynomially χ -bounded.

Theorem (Pournajafi and Trotignon, 2024)

Burling graphs are $\mathcal{AC}_{\geq 6}$ -free.

Consequences:

- ① New proof that Burling graphs are degree-bounded.

(Original Proof: [PKKLMTW'14] and [FP'10])

- ② Second Corollary is tight.

Remark: Shift graphs and their induced subgraph are also $\mathcal{AC}_{\geq 6}$ -free [Gyárfás'90], and thus also form a degree-bounded class.

Open problem: finding the right function

Problem

*Find the smallest $f(d)$ such that every 2-edge-coloured graph G with $\delta(G) \geq f(d)$ contains a **monochromatic induced subgraph H** with $\delta(H) \geq d$.*

$$C \cdot 2^{d/2} \leq f(d) \leq 2^{2^{2^{O(d)}}}$$

Open problem: other graph parameters

Theorem (Carbonero, Hompe, Moore, and Spirkl, 2023)

*There exist 2-edge-coloured graphs G with **arbitrarily large chromatic number** in which every monochromatic induced subgraph is **4-colourable**.*

Problem

Show that, for every graph G with $\chi(G) \geq f(k)$, if G is randomly edge-coloured then

$$\mathbb{P}\left(\exists H \subseteq_{\text{ind}} G, \text{ monochromatic, with } \chi(H) \geq k\right) \rightarrow 1$$

as $f(k)$ goes to infinity.

(suggested by A. Harutyunyan)

Open problem: other graph parameters

Theorem (Carbonero, Hompe, Moore, and Spirkl, 2023)

*There exist 2-edge-coloured graphs G with **arbitrarily large chromatic number** in which every monochromatic induced subgraph is **4-colourable**.*

Problem

Show that, for every graph G with $\chi(G) \geq f(k)$, if G is randomly edge-coloured then

$$\mathbb{P}\left(\exists H \subseteq_{\text{ind}} G, \text{ monochromatic, with } \chi(H) \geq k\right) \rightarrow 1$$

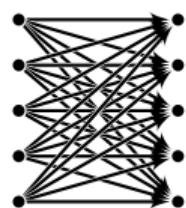
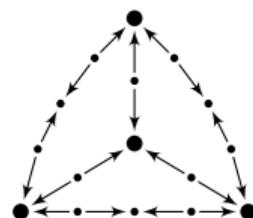
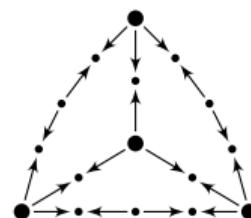
as $f(k)$ goes to infinity.

(suggested by A. Harutyunyan)

Open problem: refining the directed version of Kühn and Osthus' Theorem

Corollary

If $\delta(G) \geq f(s, t)$ then every orientation \vec{G} of G contains $\vec{K}_{s,s}$ or an **induced
antidirected subdivision** of K_t .



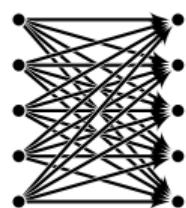
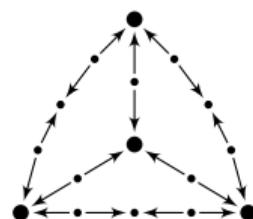
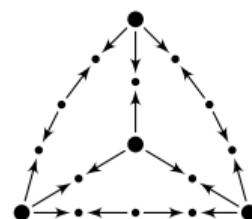
Problem

If $\delta(G) \geq f(s, t)$ then every orientation \vec{G} of G contains $\vec{K}_{s,s}$ or an **induced
antidirected subdivision** of K_t whose **branch vertices are sources**.

Open problem: refining the directed version of Kühn and Osthus' Theorem

Corollary

If $\delta(G) \geq f(s, t)$ then every orientation \vec{G} of G contains $\vec{K}_{s,s}$ or an **induced
antidirected subdivision** of K_t .



Problem

If $\delta(G) \geq f(s, t)$ then every orientation \vec{G} of G contains $\vec{K}_{s,s}$ or an **induced
antidirected subdivision** of K_t whose **branch vertices are sources**.

Open problem: a directed analogue of Gyárfás-Sumner's conjecture

Corollary

*The class of \vec{F} -free graphs is **degree-bounded** if and only if \vec{F} is an **antidirected forest**.*

Problem

Characterise the oriented graphs \vec{F} such that \vec{F} -free graphs are χ -bounded.

- \vec{F} must be an oriented forest.
- Gyárfás (1990): $(\rightarrow\leftarrow\rightarrow\leftarrow\rightarrow\leftarrow)$ -free graphs are not χ -bounded.
- Kierstead and Trotters (1992): $(\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow)$ -free graphs are not χ -bounded.
- Chudnovsky and Seymour (2019): $(\leftarrow\rightarrow\rightarrow\rightarrow\rightarrow)$ -free graphs are χ -bounded.
- Chudnovsky and Seymour (2019): \vec{S} -free graphs are χ -bounded for every oriented star \vec{S} .

Open problem: a directed analogue of Gyárfás-Sumner's conjecture

Corollary

*The class of \vec{F} -free graphs is **degree-bounded** if and only if \vec{F} is an **antidirected forest**.*

Problem

Characterise the oriented graphs \vec{F} such that \vec{F} -free graphs are χ -bounded.

- \vec{F} must be an oriented forest.
- Gyárfás (1990): $(\rightarrow\leftarrow\rightarrow\leftarrow\rightarrow\leftarrow)$ -free graphs are not χ -bounded.
- Kierstead and Trotters (1992): $(\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow)$ -free graphs are not χ -bounded.
- Chudnovsky and Seymour (2019): $(\leftarrow\rightarrow\rightarrow\rightarrow\rightarrow)$ -free graphs are χ -bounded.
- Chudnovsky and Seymour (2019): \vec{S} -free graphs are χ -bounded for every oriented star \vec{S} .

Open problem: a directed analogue of Gyárfás-Sumner's conjecture

Corollary

*The class of \vec{F} -free graphs is **degree-bounded** if and only if \vec{F} is an **antidirected forest**.*

Problem

Characterise the oriented graphs \vec{F} such that \vec{F} -free graphs are χ -bounded.

- \vec{F} must be an **oriented forest**.
 - Gyárfás (1990): $(\rightarrow\leftarrow\rightarrow\leftarrow\rightarrow\leftarrow)$ -free graphs are **not** χ -bounded.
 - Kierstead and Trotters (1992): $(\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow)$ -free graphs are **not** χ -bounded.
 - Chudnovsky and Seymour (2019): $(\leftarrow\rightarrow\rightarrow\rightarrow\rightarrow)$ -free graphs are χ -bounded.
 - Chudnovsky and Seymour (2019): \vec{S} -free graphs are χ -bounded for every oriented star \vec{S} .

Open problem: a directed analogue of Gyárfás-Sumner's conjecture

Corollary

The class of \vec{F} -free graphs is χ -bounded if and only if \vec{F} is an $\text{antidirected forest}$.

Problem

Characterise the oriented graphs \vec{F} such that \vec{F} -free graphs are χ -bounded.

- \vec{F} must be an oriented forest .
- **Gyárfás (1990):** $(\rightarrow\leftarrow\rightarrow\leftarrow\rightarrow)$ -free graphs are $\text{not } \chi\text{-bounded}$.
- **Kierstead and Trotters (1992):** $(\rightarrow\rightarrow\rightarrow\leftarrow\rightarrow)$ -free graphs are $\text{not } \chi\text{-bounded}$.
- Chudnovsky and Seymour (2019): $(\leftarrow\rightarrow\rightarrow\rightarrow\rightarrow)$ -free graphs are χ -bounded.
- Chudnovsky and Seymour (2019): \vec{S} -free graphs are χ -bounded for every oriented star \vec{S} .

Open problem: a directed analogue of Gyárfás-Sumner's conjecture

Corollary

The class of \vec{F} -free graphs is χ -bounded if and only if \vec{F} is an $\text{antidirected forest}$.

Problem

Characterise the oriented graphs \vec{F} such that \vec{F} -free graphs are χ -bounded.

- \vec{F} must be an oriented forest .
- **Gyárfás (1990):** $(\rightarrow\leftarrow\rightarrow\leftarrow\rightarrow)$ -free graphs are $\text{not } \chi$ -bounded.
- **Kierstead and Trotters (1992):** $(\rightarrow\rightarrow\rightarrow\leftarrow\rightarrow)$ -free graphs are $\text{not } \chi$ -bounded.
- **Chudnovsky and Seymour (2019):** $(\leftarrow\rightarrow\rightarrow\leftarrow\rightarrow)$ -free graphs are χ -bounded.
- **Chudnovsky and Seymour (2019):** \vec{S} -free graphs are χ -bounded for every oriented star \vec{S} .

Thank you!