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Ramsey Theorem

Ramsey Number R(s, t) : min. integer n such that all (blue/red)-edge-colourings of
K, contains K, in red or K; in blue.
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Theorem (Ramsey, 1930; Erd6s and Szekeres, 1935)
For all s,t € N, R(s,t) exists and R(s,t) < (SJsr:z) J

Question: What can we say about the monochromatic induced substructures in
general edge-coloured graphs ?
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Monochromatic induced substructures in dense graphs
Theorem (Kévari, Sés, and Turan, 1954)
For every graph G of order n, if K. . ¢ G then G has at most f(s) - n?~% edges.
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Monochromatic induced substructures in graphs with large minimum degree

If G is a 2-edge-coloured graph with 6(G) > f(d) then G contains a monochromatic

Theorem (Char, Kawarabayashi, P-A, 2025)
induced subgraph H with §(H) > d. J
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induced subgraph H with §(H) > d.

Remarks:

@ Trivial if H is not induced (every graph with average degree 2d has a subgraph with
minimum degree d).
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Monochromatic induced substructures in graphs with large minimum degree

Theorem (Char, Kawarabayashi, P-A, 2025)

If G is a 2-edge-coloured graph with 6(G) > f(d) then G contains a monochromatic
induced subgraph H with §(H) > d.

RN

Remarks:

@ Trivial if H is not induced (every graph with average degree 2d has a subgraph with
minimum degree d).

@ Generalises Ramsey's Theorem (up to the value of f).
@ Can be extended to k-edge-coloured graphs.
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Proof (1/3) : Reduce to the bipartite case

Theorem (Kwan, Letzter, Sudakov, Tran, 2020)

Every graph G with 6(G) > f(s, d) contains K or an induced bipartite subgraph H
with 6(H) > d.
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Proof (2/3) : Reduce to the unbalanced bipartite case
Lemma (Kiihn and Osthus, 2004)

Every bipartite graph G = (AU B, E) with average degree Ad(G) =T > 4d > 32

contains an induced bipartite subgraph G’ = (A’ U B’, E’) such that:
Q |A| > 5 - |B| and
@ d < dg/(a) < 16d foreveryac A'.
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Proof (2/3) : Reduce to the unbalanced bipartite case

Lemma (Kiihn and Osthus, 2004)
Every bipartite graph G = (AU B, E) with average degree Ad(G) =T > 4d > 32
contains an induced bipartite subgraph G’ = (A’ U B’, E’) such that:

Q |A| > 5 - |B| and

@ d < dg/(a) < 16d foreveryac A'.

Proof: Assume that |A| > |B| and Ad(H) < T for every H Cipg G.

e 7 Al>|B :
5(G) =T)2 /2 <d(a) <2r,
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Deg! 4

P > .
RS HE keep each b € B with
A e B

S P probability 4d/I’

: : Ne
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[/2 < d(a) < 2r,
|A| > |B|/2

By Chernoff's Bound:
o P(1B'| > %|B|) = P(|B'| > 2K(|8)))

7/26



D es o/

: : i3 .
RS HE keep each b € B with
A e B

Do o probability 4d/I’

/2 <d(a) <or,
|Al > |B|/2

By Chernoff's Bound:
° IP’(\B/| > %\BD - ]P’(\B’| > 21E(|B’\)) <e83< 14,

7/26



D es o/

: : i3 .
RS HE keep each b € B with
A e B

Do o probability 4d/I’

/2 <d(a) <or,
|Al > |B|/2

By Chernoff's Bound:
° IP’(\B/| > %\BD - ]P’(\B’| > 21E(|B’\)) <e83< 14,

o P(a¢ A)=P(X, < d)+P(X > 16d)

7/26



D es o/

: : i3 .
RS HE keep each b € B with
A e B

Do o probability 4d/I’

/2 <d(a) <or,
|Al > |B|/2

By Chernoff's Bound:
° IP’(\B/| > %\BD - ]P’(\B’| > 21E(|B’\)) <e83< 14,

o Plag A) = ]P’(Xa < d) +JP>(Xa > 16d) < IP’(Xa < %E(Xa)) + ]P’(Xa > 21E(Xa))

7/26



D es o/

: : i3 .
RS HE keep each b € B with
A e B

Do o probability 4d/I’

/2 <d(a) <or,
|Al > |B|/2

By Chernoff's Bound:
° IP’(\B/| > %\BD - ]P’(\B’| > 21E(|B’\)) <e83< 14,

o Plag A) = ]P’(Xa < d) +JP>(Xa > 16d) < IP’(Xa < %E(Xa)) + ]P’(Xa > 21E(Xa)) <1/4.

7/26



D es o/

: : i3 .
RS HE keep each b € B with
A e B

Do o probability 4d/I’

/2 <d(a) <or,
|Al > |B|/2

By Chernoff's Bound:
° IP’(\B/| > %\BD - ]P’(\B’| > 21E(|B’\)) <e83< 14,

o Plag A) = ]P’(Xa < d) +JP>(Xa > 16d) < IP’(Xa < %E(Xa)) + ]P’(Xa > 2E(Xa)) <1/4.
By Markov's Inequality:
o P14 < IAl/2) = P([A] > |Al/2)

7/26



D es o/

: : i3 .
RS HE keep each b € B with
A e B

Do o probability 4d/I’

/2 <d(a) <or,
|Al > |B|/2

By Chernoff's Bound:
° IP’(\B/| > %\BD - ]P’(\B’| > 21E(|B’\)) <e83< 14,

o Plag A) = ]P’(Xa < d) +JP>(Xa > 16d) < IP’(Xa < %E(Xa)) + ]P’(Xa > 2E(Xa)) <1/4.
By Markov's Inequality:
o P(|4'| < |Al/2) = ([&] > |A/2) < P(|A] > 25(|AT)))

7/26



D es o/

: : i3 .
RS HE keep each b € B with
A e B

Do o probability 4d/I’

/2 <d(a) <or,
|Al > |B|/2

By Chernoff's Bound:
° IP’(\B/| > %\BD - ]P’(\B’| > 21E(|B’\)) <e83< 14,

o Plag A) = ]P’(Xa < d) +JP>(Xa > 16d) < IP’(Xa < %E(Xa)) + ]P’(Xa > 2E(Xa)) <1/4.
By Markov's Inequality:
° IP’(\A/\ < |A|/2) - IP( EE |A|/2) < IP’( B 2E(Wy))< 1/2.

7/26



D es o/

P > .
RS : keep each b € B with
A e B
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By Chernoff's Bound:
° IP’(\B/| > %\BD - ]P’(\B’| > 21E(|B’\)) <e83< 14,

P(ad A') = ]P’(Xa < d) +JP>(Xa > 16d) < IP’(Xa < %E(Xa)) + ]P’(Xa > 21E(Xa)) <1/4.

By Markov's Inequality:
° IP’(\A/\ |A|/2) —P()Af | > |Al/2 ) P(\Al 2E(|A7]) )< 1/2.

= with positive probability, |A'| > 1|A| > %|B| > 55 |B/.
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Proof (3/3): Edge-coloured unbalanced bipartite graphs

Lemma
Let G = (AU B, E) be a 2-edge-coloured bipartite graph with
O |A| > 2%49+1.|B| and
@ 4d < d(a) < 64d for every a € A.
Then G contains monochromatic induced subgraph H with 6(H) > d.

Proof: By symmetry, we assume that half of the vertices a € A satisfy dpe(a) = dred(a).
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Proof: By symmetry, we assume that half of the vertices a € A satisfy dpe(a) = dred(a).
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O
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Degree- and x-boundedness

Definition (x-boundedness)
A hereditary class of graphs G is (polynomially) x-bounded if there is (polynomial)
function f such that

x(G) < f(w(G))

for every G € G.
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Definition (x-boundedness)

A hereditary class of graphs G is (polynomially) x-bounded if there is (polynomial)
function f such that

x(G) < f(w(G))
for every G € G.

Definition (Degree-boundedness)

A hereditary class of graphs G is (polynomially) degree-bounded if there is
(polynomial) function f such that

(G) < £(7(G))

for every G € G, where 7(G) is the largest t such that K; ; C G.
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Theorem (Brianski, Davies, Walczak, 2024)

There exist hereditary x-bounded classes of graphs that are x-bounded but not
polynomially x-bounded.
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Theorem (Brianski, Davies, Walczak, 2024)

There exist hereditary x-bounded classes of graphs that are x-bounded but not
polynomially x-bounded.

Theorem (Girdo and Hunter, 2025)
Every degree-bounded hereditary class of graphs is polynomially degree-bounded.

Corollary

If G is a degree-bounded hereditary class of graphs and K. . ¢ G then G is polynomially
x-bounded.

Proof: For every graph G € G,

8(G) < 7(6)°M < R(s,w(G) +1)°M < (w(G) +5)°).
GH ES
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Application 1: building larger degree-bounded classes of graphs

Definition
Given a class G and k € N, G, is the class of graphs admitting a k-edge-colouring such
that every monochromatic induced subgraph belongs to G.
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Application 1: building larger degree-bounded classes of graphs

Definition
Given a class G and k € N, G, is the class of graphs admitting a k-edge-colouring such
that every monochromatic induced subgraph belongs to G.

Example: a member of F,, where F is the class of forests.

Corollary
If G is a degree-bounded hereditary class then, for every k, Gy is degree-bounded. J

Proof: If G € Gx and 6(G) = fmonoc.(fg(k)) then G contains a monochromatic induced
subgraph H with 6(H) > fg(k) and 7(G) > 7(H) > k.
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An example: odd-signable graphs
A graph is odd signable if its edges can be assigned {0, 1} such that every induced
cycle has an odd assignment.

N 4
0 0
\T_ l_T/

0 1 0o 0
| |
0/._ A 1
/ 1 AN
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An example: odd-signable graphs

A graph is odd signable if its edges can be assigned {0, 1} such that every induced

cycle has an odd assignment.

Theorem (Chudnovsky and Seymour, 2023)

The class EH of even-hole-free graphs is degree-bounded and linearly x-bounded.

Corollary

The class OS of odd-signable graphs is degree-bounded and polynomially x-bounded.

Proof: We have OS C EHo, hence OS is degree-bounded. Since Kp3 ¢ OS, it is

polynomially x-bounded.



A few definitions for digraphs

An antidirected graph is an oriented graph in which every vertex is a source or a sink.
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An antidirected graph is an oriented graph in which every vertex is a source or a sink.
) { ]
/*\ ./ \. °
o L] [J

[ )
.>\<:
0O—> 0 <——0—> 0 <——0 / \ T T ° [ ]
[ { ] ;
° ° ° \o/ o=
The Transitive Tournament on k vertices T T: .@5

1 2 3 k

—_—

Every tournament of order 2% contains TT.

Theorem (Erdés and Moser, 1963) J
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Substructures of oriented graphs with large minimum degree

Corollary

Let G be a graph with 6(G) > f(k,d), then every orientation of G contains TTy or an
induced antidirected subgraph H with 6(H) > d.
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Application 2: an analogue of Gyarfas-Sumner

Conjecture (Gyarfas, 1975; Sumner, 1981)
The class of F-free graphs is x-bounded if and only if F is a forest.
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Application 2: an analogue of Gyarfas-Sumner

Conjecture (Gyarfas, 1975; Sumner, 1981)
The class of F-free graphs is x-bounded if and only if F is a forest.

Theorem (Kierstead and Penrice, 1994)
The class of F-free graphs is degree-bounded if and only if F is a forest.

For an oriented graph F, a graph G is F-free if it has an orientation without any
induced copy of F.

Corollary J

The class of F-free graphs is degree-bounded if and only if F is an antidirected forest.
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Application 3: a directed analogue of Kiihn and Osthus" Theorem

Theorem (Kiihn and Osthus, 2004)
If6(G) > f(s,t) then G contains K s or an induced even subdivision of K. J
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Application 3: a directed analogue of Kiihn and Osthus" Theorem
Theorem (Kiihn and Osthus, 2004) }

If6(G) > f(s,t) then G contains K s or an induced even subdivision of K.

° Ks,s is the antidirected graph whose underlying graph is K ;.
@ An antidirected subdivision of H is an antidirected graph whose underlying graph
is an even subdivision of H.

Corollary

If5(G) = f(s. t) then every orientation G of G contains Ky, or an induced
antidirected subdivision of K;.
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Corollary

If5(G) = f(s,t) then every orientation G of G contains &75 or an induced
antidirected subdivision of K;.

Proof-

=t 3. TTos

o 35//\7/ e

6 = f(s,t)

5> f'(s,t)
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Corollary

If5(G) = f(s,t) then every orientation G of G contains &75 or an induced
antidirected subdivision of K;.

Proof-

v’\”[ = = TTos

ANTAN =2 ..
<l>'( ] { =

\, /F\.

55 f KO s l N\,

> f(s, 1) £or N
Qz‘éoaukuk\.

19/26



Application 4: Antidirected cycles and Burling graphs

Let AC>/, be the class of antidirected cycles of length at least ¢.

Corollary
For every ¢, the class of AC~-free graphs is degree-bounded. J

Proof: Every antidirected subdivision of K, contains an antidirected cycle of length > 2¢.
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Consequences:
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(Original Proof: [PKKLMTW'14] and [FP'10])
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Corollary
For every ¢, the class of AC~-free graphs is degree-bounded.

Corollary
For every ¢, the class of ({AC4} U AC>)-free graphs is polynomially x-bounded.

Theorem (Pournajafi and Trotignon, 2024)
Burling graphs are AC~¢-free.

Consequences:
© New proof that Burling graphs are degree-bounded.
(Original Proof: [PKKLMTW'14] and [FP'10])
@ Second Corollary is tight.

Remark: Shift graphs and their induced subgraph are also AC>¢-free [Gyarfas'90], and
thus also form a degree-bounded class.
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Open problem: finding the right function

Problem
Find the smallest f(d) such that every 2-edge-coloured graph G with §(G) > f(d)
contains a monochromatic induced subgraph H with 6(H) > d.

20(d)
C-29/2 < f(d) < 22
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Open problem: other graph parameters

Theorem (Carbonero, Hompe, Moore, and Spirkl, 2023)

There exist 2-edge-coloured graphs G with arbitrarily large chromatic number in which
every monochromatic induced subgraph is 4-colourable.
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Open problem: other graph parameters

Theorem (Carbonero, Hompe, Moore, and Spirkl, 2023)

There exist 2-edge-coloured graphs G with arbitrarily large chromatic number in which
every monochromatic induced subgraph is 4-colourable.

Problem
Show that, for every graph G with x(G) > f(k), if G is randomly edge-coloured then

IP’(EH Cina G, monochromatic, with x(H) > k) — 1

as (k) goes to infinity.

V.

(suggested by A. Harutyunyan)
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Open problem: refining the directed version of Kiihn and Osthus’ Theorem

Corollary

If5(G) > f(s,t) then every orientation G of G contains Ks,s or an induced
antidirected subdivision of K;.
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Open problem: refining the directed version of Kiihn and Osthus’ Theorem

Corollary

If5(G) > f(s,t) then every orientation G of G contains Ks,s or an induced
antidirected subdivision of K;.

N AN
7N SN
AN SN
.A‘C:;».&:)\. .fz::&-—»::}\.

Problem

If5(G) > f(s,t) then every orientation G of G contains Ks,s or an induced
antidirected subdivision of K; whose branch vertices are sources.
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Open problem: a directed analogue of Gyarfas-Sumner's conjecture

Corollary

The class of F-free graphs is degree-bounded if and only if F is an antidirected forest.
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Open problem: a directed analogue of Gyarfas-Sumner’s conjecture

Corollary

The class of F-free graphs is degree-bounded if and only if F is an antidirected forest.

Problem

Characterise the oriented graphs F such that F-free graphs are x-bounded.

e F must be an oriented forest.

o Gyarfas (1990): (~—+~—+—+)-free graphs are not y-bounded.

o Kierstead and Trotters (1992): (+—+—+—+)-free graphs are not y-bounded.
@ Chudnovsky and Seymour (2019): (+<—+—+—+)-free graphs are y-bounded.

@ Chudnovsky and Seymour (2019): S-free graphs are y-bounded for every
oriented star S.
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Thank you!



