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Ramsey Theorem

Ramsey Number R(s, t) : min. integer n such that all (blue/red)-edge-colourings of
Kn contains Ks in red or Kt in blue.

R(3, 3) = 6. R(3, 3) = 6

Theorem (Ramsey, 1930; Erdős and Szekeres, 1935)

For all s, t ∈ N, R(s, t) exists and R(s, t) ⩽
(
s+t−2
s−1

)
.

Question: What can we say about the monochromatic induced substructures in
general edge-coloured graphs ?
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Monochromatic induced substructures in dense graphs
Theorem (Kővári, Sós, and Turán, 1954)

For every graph G of order n, if Ks,s ⊈ G then G has at most f (s) · n2− 1
s edges.

Corollary
For every ε > 0, if G is a 2-edge-coloured graph of order n ⩾ f (ε, s, t) with at least
ε · n2 edges, then G contains a monochromatic induced copy of Ks,s or Kt .

Proof:

K-S-T−−−−−−−−−→
#blue ⩾ #red

Ramsey

Ramsey
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Monochromatic induced substructures in graphs with large minimum degree

Theorem (Char, Kawarabayashi, P-A, 2025)
If G is a 2-edge-coloured graph with δ(G ) ⩾ f (d) then G contains a monochromatic
induced subgraph H with δ(H) ⩾ d .

Remarks:
Trivial if H is not induced (every graph with average degree 2d has a subgraph with
minimum degree d).
Generalises Ramsey’s Theorem (up to the value of f ).
Can be extended to k-edge-coloured graphs.
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Proof (1/3) : Reduce to the bipartite case

Theorem (Kwan, Letzter, Sudakov, Tran, 2020)
Every graph G with δ(G ) ⩾ f (s, d) contains Ks or an induced bipartite subgraph H
with δ(H) ⩾ d .

⇒ we only have to prove the result for bipartite graphs:

K-L-S-T

δ ⩾ d

Kd+1

Ramsey
Kd+1
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Proof (2/3) : Reduce to the unbalanced bipartite case
Lemma (Kühn and Osthus, 2004)
Every bipartite graph G = (A ∪ B,E ) with average degree Ad(G ) = Γ > 4d ⩾ 32
contains an induced bipartite subgraph G ′ = (A′ ∪ B ′,E ′) such that:

1 |A′| ⩾ Γ
32d · |B ′| and

2 d ⩽ dG ′(a) ⩽ 16d for every a ∈ A′.

Proof: Assume that |A| ⩾ |B| and Ad(H) ⩽ Γ for every H ⊆ind G .

δ(G) ⩾ Γ/2

A B
|A| ⩾ |B|

Ad(G) = Γ

d > 2Γ

Γ/2 ⩽ d(a) ⩽ 2Γ,

|Ã| ⩾ |B|/2

Ã

B
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Γ/2 ⩽ d(a) ⩽ 2Γ,

|Ã| ⩾ |B|/2

Ã B
keep each b ∈ B with

probability 4d/Γ

d ⩽ d(a) ⩽ 16d ,

|A′| ⩾ Γ
32d |B

′|

A′ B ′

By Chernoff’s Bound:

P
(
|B ′| ⩾ 8d

Γ
|B|

)
= P

(
|B ′| ⩾ 2E(|B ′|)

)
⩽ e−8d/3⩽ 1/4.

P(a /∈ A′) = P
(
Xa < d

)
+ P

(
Xa > 16d

)
⩽ P

(
Xa <

1
2E(Xa)

)
+ P

(
Xa > 2E(Xa)

)
⩽ 1/4.

By Markov’s Inequality:

P
(
|A′| ⩽ |Ã|/2

)
= P

( ∣∣A′
∣∣ ⩾ |Ã|/2

)
⩽ P

( ∣∣A′
∣∣ ⩾ 2E(

∣∣A′
∣∣))⩽ 1/2.

=⇒ with positive probability, |A′| ⩾ 1
2 |Ã| ⩾

1
4 |B| ⩾ Γ

32d |B
′|.
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2 |Ã| ⩾

1
4 |B| ⩾ Γ

32d |B
′|.

7 / 26



Γ/2 ⩽ d(a) ⩽ 2Γ,
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Proof (3/3): Edge-coloured unbalanced bipartite graphs
Lemma
Let G = (A ∪ B,E ) be a 2-edge-coloured bipartite graph with

1 |A| ⩾ 264d+1 · |B| and
2 4d ⩽ d(a) ⩽ 64d for every a ∈ A.

Then G contains monochromatic induced subgraph H with δ(H) ⩾ d .

Proof: By symmetry, we assume that half of the vertices a ∈ A satisfy dblue(a) ⩾ dred(a).

|A| ⩾ 264d · |B|

A B
keep each b ∈ B with

probability 1/2

Monochromatic,
d(a) ⩾ 2d

|A′| ⩾ |B ′|
A′ B ′
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|A| ⩾ 264d · |B|

A B
keep each b ∈ B with

probability 1/2

Monochromatic,
d(a) ⩾ 2d

|A′| ⩾ |B ′|
A′ B ′

P(a ∈ A′) ⩾ ( 1
2 )

d(a) ⩾ 2−64d .

E(|A′|) ⩾ 2−64d · |A| ⩾ |B| ⩾ |B ′|, hence |A′| ⩾ |B ′| with positive probability.

G [A′ ∪B ′] has average degree ⩾ 2d and there is H ⊆ind G [A′ ∪B ′] with δ(H) ⩾ d .
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Degree- and χ-boundedness

Definition (χ-boundedness)
A hereditary class of graphs G is (polynomially) χ-bounded if there is (polynomial)
function f such that

χ(G ) ⩽ f (ω(G ))

for every G ∈ G.

Definition (Degree-boundedness)
A hereditary class of graphs G is (polynomially) degree-bounded if there is
(polynomial) function f such that

δ(G ) ⩽ f (τ(G ))

for every G ∈ G, where τ(G ) is the largest t such that Kt,t ⊆ G .
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Theorem (Briański, Davies, Walczak, 2024)
There exist hereditary χ-bounded classes of graphs that are χ-bounded but not
polynomially χ-bounded.

Theorem (Girão and Hunter, 2025)
Every degree-bounded hereditary class of graphs is polynomially degree-bounded.

Corollary
If G is a degree-bounded hereditary class of graphs and Ks,s /∈ G then G is polynomially
χ-bounded.

Proof: For every graph G ∈ G,

δ(G ) ⩽
GH

τ(G )O(1) < R(s, ω(G ) + 1)O(1) ⩽
ES

(ω(G ) + s)O(s).
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Application 1: building larger degree-bounded classes of graphs
Definition
Given a class G and k ∈ N, Gk is the class of graphs admitting a k-edge-colouring such
that every monochromatic induced subgraph belongs to G.

Example: a member of F2, where F is the class of forests.

Corollary
If G is a degree-bounded hereditary class then, for every k , Gk is degree-bounded.

Proof: If G ∈ Gk and δ(G ) ⩾ fmonoc.(fG(k)) then G contains a monochromatic induced
subgraph H with δ(H) ⩾ fG(k) and τ(G ) ⩾ τ(H) ⩾ k .
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An example: odd-signable graphs
A graph is odd signable if its edges can be assigned {0, 1} such that every induced
cycle has an odd assignment.

1

0

0 1

0

0
0

0

1

1 0

1

Theorem (Chudnovsky and Seymour, 2023)
The class EH of even-hole-free graphs is degree-bounded and linearly χ-bounded.

Corollary
The class OS of odd-signable graphs is degree-bounded and polynomially χ-bounded.

Proof: We have OS ⊆ EH2, hence OS is degree-bounded. Since K2,3 /∈ OS, it is
polynomially χ-bounded.
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A few definitions for digraphs

An antidirected graph is an oriented graph in which every vertex is a source or a sink.

The Transitive Tournament on k vertices TTk :
1 2 3

· · ·
k

Theorem (Erdős and Moser, 1963)
Every tournament of order 2k contains TTk .
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Substructures of oriented graphs with large minimum degree
Corollary
Let G be a graph with δ(G ) ⩾ f (k , d), then every orientation of G contains TTk or an
induced antidirected subgraph H with δ(H) ⩾ d .

Proof:

δ ⩾ f (k, d)

KLST

δ ⩾ f ′(d)

EM · · ·
TTk

CKP

δ ⩾ d
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Application 2: an analogue of Gyárfás-Sumner

Conjecture (Gyárfás, 1975; Sumner, 1981)
The class of F -free graphs is χ-bounded if and only if F is a forest.

Theorem (Kierstead and Penrice, 1994)
The class of F -free graphs is degree-bounded if and only if F is a forest.

For an oriented graph F⃗ , a graph G is F⃗ -free if it has an orientation without any
induced copy of F⃗ .

Corollary

The class of F⃗ -free graphs is degree-bounded if and only if F⃗ is an antidirected forest.

16 / 26



Application 2: an analogue of Gyárfás-Sumner

Conjecture (Gyárfás, 1975; Sumner, 1981)
The class of F -free graphs is χ-bounded if and only if F is a forest.

Theorem (Kierstead and Penrice, 1994)
The class of F -free graphs is degree-bounded if and only if F is a forest.

For an oriented graph F⃗ , a graph G is F⃗ -free if it has an orientation without any
induced copy of F⃗ .

Corollary

The class of F⃗ -free graphs is degree-bounded if and only if F⃗ is an antidirected forest.

16 / 26



Application 2: an analogue of Gyárfás-Sumner

Conjecture (Gyárfás, 1975; Sumner, 1981)
The class of F -free graphs is χ-bounded if and only if F is a forest.

Theorem (Kierstead and Penrice, 1994)
The class of F -free graphs is degree-bounded if and only if F is a forest.

For an oriented graph F⃗ , a graph G is F⃗ -free if it has an orientation without any
induced copy of F⃗ .

Corollary

The class of F⃗ -free graphs is degree-bounded if and only if F⃗ is an antidirected forest.

16 / 26



Corollary

The class of F⃗ -free graphs is degree-bounded if and only if F⃗ is an antidirected forest.

Proof:
=⇒ there exist bipartite graphs with arbitrarily large minimum degree and girth.
⇐= We can assume that F⃗ is connected.

Let G with τ(G ) ⩽ s and δ(G ) ⩾ f (s).

δ ⩾ f (s)

CKP ×

· · · TT2s+2

δ ≫ |F⃗ |

KP

contains F⋆

17 / 26



Corollary

The class of F⃗ -free graphs is degree-bounded if and only if F⃗ is an antidirected forest.

Proof:
=⇒ there exist bipartite graphs with arbitrarily large minimum degree and girth.
⇐= We can assume that F⃗ is connected.

Let G with τ(G ) ⩽ s and δ(G ) ⩾ f (s).

δ ⩾ f (s)

CKP ×

· · · TT2s+2

δ ≫ |F⃗ |

KP

contains F⋆

17 / 26



Corollary

The class of F⃗ -free graphs is degree-bounded if and only if F⃗ is an antidirected forest.

Proof:
=⇒ there exist bipartite graphs with arbitrarily large minimum degree and girth.
⇐= We can assume that F⃗ is connected.

Let G with τ(G ) ⩽ s and δ(G ) ⩾ f (s).

δ ⩾ f (s)

CKP ×

· · · TT2s+2

δ ≫ |F⃗ |

KP

contains F⋆

17 / 26



Corollary

The class of F⃗ -free graphs is degree-bounded if and only if F⃗ is an antidirected forest.

Proof:
=⇒ there exist bipartite graphs with arbitrarily large minimum degree and girth.
⇐= We can assume that F⃗ is connected.

Let G with τ(G ) ⩽ s and δ(G ) ⩾ f (s).

δ ⩾ f (s)

CKP ×

· · · TT2s+2

δ ≫ |F⃗ |

KP

contains F⋆

17 / 26



Corollary

The class of F⃗ -free graphs is degree-bounded if and only if F⃗ is an antidirected forest.

Proof:
=⇒ there exist bipartite graphs with arbitrarily large minimum degree and girth.
⇐= We can assume that F⃗ is connected.

Let G with τ(G ) ⩽ s and δ(G ) ⩾ f (s).

δ ⩾ f (s)

CKP ×

· · · TT2s+2

δ ≫ |F⃗ |

KP

contains F⋆

17 / 26



Corollary

The class of F⃗ -free graphs is degree-bounded if and only if F⃗ is an antidirected forest.

Proof:
=⇒ there exist bipartite graphs with arbitrarily large minimum degree and girth.
⇐= We can assume that F⃗ is connected.

Let G with τ(G ) ⩽ s and δ(G ) ⩾ f (s).

δ ⩾ f (s)

CKP ×

· · · TT2s+2

δ ≫ |F⃗ |

KP

contains F⋆

17 / 26



Corollary

The class of F⃗ -free graphs is degree-bounded if and only if F⃗ is an antidirected forest.

Proof:
=⇒ there exist bipartite graphs with arbitrarily large minimum degree and girth.
⇐= We can assume that F⃗ is connected.

Let G with τ(G ) ⩽ s and δ(G ) ⩾ f (s).

δ ⩾ f (s)

CKP ×

· · · TT2s+2

δ ≫ |F⃗ |

KP

contains F⋆

17 / 26



Application 3: a directed analogue of Kühn and Osthus’ Theorem
Theorem (Kühn and Osthus, 2004)
If δ(G ) ⩾ f (s, t) then G contains Ks,s or an induced even subdivision of Kt .

K⃗s,s is the antidirected graph whose underlying graph is Ks,s .
An antidirected subdivision of H is an antidirected graph whose underlying graph
is an even subdivision of H.

Corollary

If δ(G ) ⩾ f (s, t) then every orientation G⃗ of G contains K⃗s,s or an induced
antidirected subdivision of Kt .
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Application 4: Antidirected cycles and Burling graphs

Let AC⩾ℓ be the class of antidirected cycles of length at least ℓ.

Corollary
For every ℓ, the class of AC⩾ℓ-free graphs is degree-bounded.

Proof: Every antidirected subdivision of Kℓ contains an antidirected cycle of length ⩾ 2ℓ.

Corollary
For every ℓ, the class of ({AC4} ∪ AC⩾ℓ)-free graphs is polynomially χ-bounded.

Proof: It is a hereditary degree-bounded class excluding K3,9.

Theorem (Pournajafi and Trotignon, 2024)
Burling graphs are AC⩾6-free.
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For every ℓ, the class of ({AC4} ∪ AC⩾ℓ)-free graphs is polynomially χ-bounded.

Theorem (Pournajafi and Trotignon, 2024)
Burling graphs are AC⩾6-free.

Consequences:
1 New proof that Burling graphs are degree-bounded.

(Original Proof: [PKKLMTW’14] and [FP’10])

2 Second Corollary is tight.

Remark: Shift graphs and their induced subgraph are also AC⩾6-free [Gyárfás’90], and
thus also form a degree-bounded class.
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Open problem: finding the right function

Problem
Find the smallest f (d) such that every 2-edge-coloured graph G with δ(G ) ⩾ f (d)
contains a monochromatic induced subgraph H with δ(H) ⩾ d .

C · 2d/2 ⩽ f (d) ⩽ 222O(d)
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Open problem: other graph parameters

Theorem (Carbonero, Hompe, Moore, and Spirkl, 2023)
There exist 2-edge-coloured graphs G with arbitrarily large chromatic number in which
every monochromatic induced subgraph is 4-colourable.

Problem
Show that, for every graph G with χ(G ) ⩾ f (k), if G is randomly edge-coloured then

P
(
∃H ⊆ind G , monochromatic, with χ(H) ⩾ k

)
−→ 1

as f (k) goes to infinity.

(suggested by A. Harutyunyan)
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Open problem: refining the directed version of Kühn and Osthus’ Theorem

Corollary

If δ(G ) ⩾ f (s, t) then every orientation G⃗ of G contains K⃗s,s or an induced
antidirected subdivision of Kt .

Problem
If δ(G ) ⩾ f (s, t) then every orientation G⃗ of G contains K⃗s,s or an induced
antidirected subdivision of Kt whose branch vertices are sources.
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Open problem: a directed analogue of Gyárfás-Sumner’s conjecture

Corollary

The class of F⃗ -free graphs is degree-bounded if and only if F⃗ is an antidirected forest.

Problem
Characterise the oriented graphs F⃗ such that F⃗ -free graphs are χ-bounded.

F⃗ must be an oriented forest.
Gyárfás (1990): ( )-free graphs are not χ-bounded.
Kierstead and Trotters (1992): ( )-free graphs are not χ-bounded.
Chudnovsky and Seymour (2019): ( )-free graphs are χ-bounded.

Chudnovsky and Seymour (2019): S⃗-free graphs are χ-bounded for every
oriented star S⃗ .
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Thank you!
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